Late Assignment submission
Upt. 2 days : lose 25%
" 4 day : lose 50%
No submission beyond 4 days

From next submission, hand in typeset solns (hardcopy not email) preferably in latex since it is easier to typeset math formulas.

Heap data structure

Priority queue: Given a set of elements, we want to support the following operations efficiently:
1. Find min element of S
2. Extract-min (find and delete)
3. insert/delete elements in/from S
 $O(\log |S|)$
 $|S| = n$
Making a heap out of n elements takes $O(n)$ time.

Compare with binary search trees.

→ Can we search in heaps?

Yes, but...

Given two heaps H_1 and H_2, can we construct $H = H_1 \cup H_2$?

Assume $|H_1| \leq |H_2|$

Then insert elements from H_2 into H_1

$H_1 \rightarrow O\left(\log |H_1| \cdot |H_2|\right)$

For $|H_1| \sim |H_2| \rightarrow O(n \log n)$

Goal: Construct a data structure to support unions (including the basic priority queue operations) in $O(\log n)$.
Construct B_i using $2B_{i-1}$ where

B_{i-1}

Make the root of one of the B_{i-1} the leftmost child of the root of the other B_{i-1}

B_1 O B_2

B_3

The family of trees is called Binomial trees.
Claim: (1) B_i has 2^i nodes

(2) B_i has depth i

(3) At depth j from root, B_i has $\binom{i}{j}$ nodes

$$\binom{n}{i} = \binom{n-1}{i} + \binom{n-1}{i-1}$$

Use this to prove by induction.

(4) Maxm no. of children at any node (root) is i.

Binomial Heaps

are collections of ordered Binomial trees whose nodes satisfy the heap property (min heaps)

B_5, B_5, B_3, B_1

$32 + 32 + 8 + 1 = 73$ nodes
Store the roots of the binomial trees in a list

\[
\begin{align*}
B_0 &\rightarrow B_1 \\
\triangle &\rightarrow \triangle \\
\circ &\rightarrow \circ
\end{align*}
\]

To report/find the min, we traverse the root list and identify the smallest.

\[O(\# \text{ binomial trees})\]

13 : 1101 = \(2^3 + 2^2 + 2^0\)

\[\Rightarrow \text{At most } \log_2 n \text{ trees } B_3, B_2, B_0\]

Moreover it is unique

Finding min in \(O(\log_2 n)\) time

\[
\begin{align*}
B_{H_1} &\rightarrow 0 \\
\rightarrow \circ &\rightarrow \circ \\
\triangle &\rightarrow \circ
\end{align*}
\]

\[
\begin{align*}
B_{H_2} &\rightarrow 0 \\
\rightarrow \circ &\rightarrow \circ \\
\triangle &\rightarrow \circ
\end{align*}
\]

\[
\begin{align*}
\vec{0} &\rightarrow 2 \\
\vec{0} &\rightarrow 6 \\
\circ &\rightarrow 3 \\
\circ &\rightarrow 5 \\
\circ &\rightarrow 9 \\
\circ &\rightarrow 0
\end{align*}
\]

\[
\begin{align*}
\vec{0} &\rightarrow \Delta_1 \\
\Delta_0 &\rightarrow \Delta_1 \\
\Delta_3 &\rightarrow \Delta_2 \\
\Delta_6 &\rightarrow \Delta_2
\end{align*}
\]

- 101101

- 101111

- 0101000
Union of two binomial heaps can be done in time
\[O(\log(n_1) + \log(n_2)) \]
i.e. \[O(\log n) \]

\[n = n_1 + n_2 \]