Deterministic Selection

How to find a "good" splitter, so that at least a constant fraction, say \(\frac{n}{4} \) elements are eliminated.

1. Sort every column containing at most \(\frac{n}{5} \) elements.
 Time: \(O(1) \cdot \frac{n}{5} = O(n) \)

2. Find the "median" of the median of each row, i.e., median of \(\frac{n}{5} \) elements.

3. Find the rank of \(M \) \(O(n) \)
Claim: The median of medians has rank in the range $[\alpha n, (1-\alpha)n]$ for some constant $\alpha < 1$.

\[\frac{n}{10} \times 3 \text{ elements are smaller than } M \]

\[\frac{3n}{10} \text{ } \Rightarrow \text{ larger than } M \]

\[\alpha = \frac{3}{10} \]

Step 4: If $\text{rank}(M, S) < k$
then we can discard all elements in the shaded box to the right bottom.

$\text{Time} : O(n)$

Steps 5: Call recursively on the remaining elements with the adjusted value of k.

$T(n) : \text{the worst case time over all } k < n$

\[T(n) = T\left(\frac{n}{5}\right) + O(n) \quad T(2) : O(1) \]
\[+ T\left(\frac{3}{10}n\right) \]
Prove (using induction) that
\[T(n) \leq \alpha \cdot n \] for some constant \(\alpha \).

Soft-heaps by Chazelle

Prune and Search
Finite alphabet \(\Sigma \)

Strings \(s_1, s_2, \ldots, s_n \) defined over \(\Sigma \) of lengths \(l_1, l_2, \ldots \)

\[|s_i| = l_i \]

\(\sigma_1, 1100, 101010, \ldots \)

\(L = \Sigma l_i \)

Possible that some string has size \(1 \)

Whereas some string may have size \(\frac{L}{4} \)

We would like to order the strings use "lexicographic ordering"

What algorithm should we use?

Radix sort?

100, 255, 099, 005, \ldots, 855
Using count sort, time for each phase \(\Theta(|\Xi| + n) \)

Stable sort: doesn't alter the ordering of numbers with identical values.

Radix sort has to be based on some stable sorting.

Count Sort: Stable?

Every comparison sorting can be made stable.
Radar Sort

$O(d(\log d))$

as long as d is constant

$\Sigma = 1..n$, i.e. logn bits

We can sort n numbers in the range $[1..nd]$ in $O(n)$ time.