From Markov's inequality, the probability that the # iterations exceed \(2 \cdot n \) is \(\leq \frac{1}{2} \) (use \(k = 2 \)).

Alternatively, the prob that we fail in consecutive \(n \) iterations:

\[
\leq \left(1 - \frac{1}{n}\right)^n \leq e^{-\frac{1}{2}} \leq \frac{1}{2}
\]

\((1 + x \leq e^x \text{ for any } x)\)

\(\Rightarrow\) with 50% likelihood, we will succeed within \(O(n) \) iterations i.e. about \(O(n^2) \) comparisons.

\[\frac{X_1}{X_2} / \frac{X_3}{X_4} / ... / \frac{X_n}{X_n} \]

discard

remaining

Revise the value of \(k \) (in this case \(\frac{n}{4} \))
Define the elements with ranks \(r \in \left[\frac{n}{4}, \frac{3n}{4} \right] \) as "good" elements. Since they can be used to prune at least \(\frac{n}{4} \) elements for the next round.

Observation: If we pick a "good" splitter every time, then there are at most \(\log_{4/3} n \) iterations.

\[\implies \text{Total # comparisons} \]
\[n + \frac{3n}{4} + (\frac{3}{4})^2 n + \cdots - n = O(n) \]

Prove that picking a good element is
\[\frac{n}{2n} = \frac{1}{2} \]

\[\implies \text{Let } Y \text{ represent the # trials before picking a "good" element} \]
\[E[Y] = \frac{1}{1} = 2, \quad E[Y_i] = 2 \]

Let \(Y_i \) represent the number of trials in recursive level \(i \).

In 1st level there are \(n \) elements.

2nd level: \(\frac{3n}{4} \)

In general: \(\left(\frac{3}{4}\right)^i \cdot n \)

Overall, the number of comparisons can be bounded by:

\[\sum_{i=1}^{\infty} \left(\frac{3}{4}\right)^i \cdot n \cdot Y_i \]

Comparisons

Total number of comparisons:

\[E[T] = E \left[\sum_{i=1}^{\infty} \left(\frac{3}{4}\right)^i \cdot n \cdot Y_i \right] = \sum_i E \left[\left(\frac{3}{4}\right)^i \cdot n \cdot Y_i \right] \]

Linearity property of expectation.

For any r.v. \(X_1, X_2 \), not necessarily independent:

\[E[X_1 + X_2] = E[X_1] + E[X_2] \]
\[
\sum_i E \left[\left(\frac{3}{4} \right)^i n \cdot Y_i \right] \\
= \sum_i n \cdot \left(\frac{3}{4} \right)^i \cdot E[Y_i] \\
= n \sum_i \left(\frac{3}{4} \right)^i \cdot 2 \\
= 2n \sum_i \left(\frac{3}{4} \right)^i \\
= O(n)
\]

The expected number of comparisons over all the iterations is \(\leq c n \).

From Markov's inequality the prob.
that we exceed \(k \) comparisons is \(\leq \frac{1}{k} \).

The expected running time does not depend on the input distribution (i.e. not averaged over input) for randomized algorithms.
They are independent I input distribution, i.e. worst case input.

The averaging is done over random choices made inside the algorithm (not controlled by anyone – depends on the random no. generated).

To make the selection algo deterministic, we would like to pick a “good” element with certainty.

Claim: The "median of medians" is a "good element."