Given a set S of n elements x_1, x_2, \ldots, x_n, and an integer $1 \leq K \leq n$, we want to select an element in S with rank K.

$$\text{rank}(x, S) = \left| \{ x_i \in S \mid x_i \leq x \} \right|$$

$S = 6, 3, 9, 4, 20 \mid 3, 4, 6, 9, 20$

$x = 3.8, \quad \text{rank}(x, S) = 1$

Select (S, K): returns an element x_k in S with rank K.

Assume all elements in S to be distinct.

$$[x_1, 1], (x_2, 2), (x_3, 3), \ldots, (x_n, n)$$

$x_i = x_j$ if $x_i \leq x_j$ and $x_j < x_i$.

$x_i = x_j$ if $x_i = x_j$ and $\text{smaller}(i, j)$.
Sorting (S) vs. Select (S, K)

1. Selection is reducible to Sorting
 \(\xrightarrow{\sim} \)

2. Sorting can be accomplished by multiple invocations of Selection
 \(\times \)

Select (S, K) runs in \(O(n \log n) \) comparisons

Can we select in \(O(n) \) steps?

Suppose \(k = 1 \) or \(k = n \) trivial

\(k = 2 \), \(k = 3 \)

This procedure takes \(O(k \cdot n) \) steps

\(k = \frac{n}{2} \) (median) \(\Omega(n^2) \)

Look at the sorted set \(S \) (we don't)

\(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3, \ldots, \tilde{x}_n \)

\(\tilde{x}_i < \tilde{x}_{i+1} \),
1. Choose an arbitrary element \(r \) from \(S \).
2. Lucky? Find \(\text{rank}(r, S) \).

 Tune \(N \) comparisons.

What is the probability of success?

\[
= \frac{1}{N}
\]

Pick up the \(k \)-th rank element. Using a random choice: every element is picked with equal probability.

Random variables \(X \),

Expectation of \(X \), \(E[X] \)

\(X \) = # times we iterate

\(X \in \{1, 2, 3, \ldots\} \)

Probability distribution of \(X \), say

\[
\text{Prob}[X = i] = p_i
\]

\[
E[X] = \sum_{i \geq 1} i \cdot p_i
\]
Let P_i follow geometric distribution

Fail $i-1$ times and succeed on the i^{th} trial where every trial is "independent"

$$P_i = ? \quad (1 - \frac{1}{n})^{i-1} \times \frac{1}{n}$$

If success prob is p then $i_i = (1-p)^{i-1} \times p$

$$E[x] = ? \quad \frac{1}{p} = \frac{1}{\frac{n}{p}}$$

$$Pr \left[x > k \cdot E[x] \right] \leq \frac{1}{k}$$

Markov's inequality for non-negative random variables

Proof (by contradiction): Suppose j is the smallest integer such that $j > k \cdot E[x]$

Then $\sum_{t \geq j} t \cdot \frac{1}{p} > \sum_{t \geq j} j \cdot \frac{1}{p} = j \cdot \frac{1}{p}$

$$> k \cdot E[x] \left(\frac{1}{k} \right) > E[x]$$

contradiction