Reducing 3SAT to $V.C.$

$$(x_1 \lor x_3 \lor \overline{x_4}) \land (\overline{x_1} \lor x_2 \lor \overline{x_3}) \land \ldots$$

m variables x_1, x_2, \ldots, x_n

m clauses C_1, C_2, \ldots, C_m

$V = \{x_{11}, x_{12}, x_{13}, x_{21}, x_{22}, \ldots, x_{n1}, x_{n2}, x_{n3}\}$

$E = \{(x_{11}, x_{12}), (x_{11}, x_{13}), (x_{12}, x_{13}), \ldots, (x_{n1}, x_{n2}), (x_{n2}, x_{n3}), (x_{n1}, x_{21}), (x_{12}, x_{23})\}$
Claim: The boolean formula F is satisfiable if the graph $G = \phi(F)$ has a vertex cover of size $2m$ (m is the number of clauses).

1st part: If F is satisfiable, then G has a VC of size $2m$.

To construct a cover of size $2m$, leave out one of the literals set to True and include the other two in the cover.

2nd part: If there is no VC of size $2m$, then F is not satisfiable.

Truth assignment: There must be exactly 2 vertices in the cover for each clause Δ. We assign the literal corresponding to the third vertex as True.
What is the smallest VC for a given graph?

Observation

If we could solve the decision problem, i.e., is there a VC of size K, then we can also solve the optimisation problem.

*Diagram:

```
G
```

Maximal matching: System has K edges.

Then $V_i \cap V_j \geq K$

Choose both endpoints and call that subset W.

$W \subseteq V$
This is an approximation algorithm with approximation 2.

\[
\frac{\text{Size of our cover}}{\text{Size of optimal cover}} \leq 2
\]

→ Is there an approximation algorithm for VC with approx < 2?

→ It has been proved for many NP complete problems that approximation beyond a certain limit is not possible unless P = NP