A problem Π is NP hard if all problems in the class NP can be polynomially reduced to Π.

10. If $\Pi' \in \text{NP}$ then $\Pi' \leq_{\text{poly}} \Pi$

If $\Pi \in \text{NP}$ then Π is NP complete.

NP hard/complete "under" polytime reduction.
Recall that polynomial reduction satisfy transitivity

\[\pi' \leq_{\text{poly}} \pi'' \quad \text{and} \quad \pi'' \leq_{\text{poly}} \pi^* \]

\[\implies \pi' \leq_{\text{poly}} \pi^* \]

If \(\pi \) is NPC and there is a polynomial algorithm for \(\pi \)

\(\rightarrow \) all problems in NP.

If we can show that there cannot exist a polynomial algorithm for \(\pi \), then \(P \neq NP \)

How does one show the \(\pi \) is NP complete? ??
Suppose $\Pi^1 \in \text{NPC}$ and $\Pi^2 \in \text{NPC}$

$\Rightarrow \quad \Pi^1 \leq_{\text{poly}} \Pi^2$

and $\Pi^2 \leq_{\text{poly}} \Pi^1$

To show a new problem $\Pi^3 \in \text{NPC}$

1. Π^3 is in NP

2. $\Pi^1 \leq_{\text{poly}} \Pi^3$

(since $\Pi \in \text{NP}$ $\Pi \leq_{\text{poly}} \Pi^1$

Cook-Levin theorem: The satisfiability problem of Boolean formula is NPC.
Given n boolean variables
say x_1, x_2, \ldots, x_n

$x_i \in \{T, F\}$

then, given any boolean formula

\[
\neg \land \left(x_1 \lor x_3 \right) \land \left(x_4 \lor x_5 \right)
\]

is there an assignment of x_i's such that the expression is True.

Cook-Levinth[sh]er (stronger): The satisfiability problem of a boolean formula given as Conjunctive Normal Form (CNF) is NP complete with exactly 3 literals per clause.
\[(x_1 \lor \overline{x}_2 \lor x_3) \land (x_2 \lor \overline{x}_3 \lor x_4) \land (\quad) \quad \cdots \quad (\quad)\]

say \(m \) clauses each having 3 literals (a literal is a boolean variable or its complement)

\(3 \) CNF formula
Vertex Cover problem

Does every edge have at least one of its endpoints in the cover (marked by red)?

Does there exist a vertex cover of size \(K \) (\(K \leq n \))? Is \(\text{v.c.} \) in \(\text{NP} \)?
It suffices to show that
$3CNF \leq_{poly} V.C.$

Given any instance F of the $3CNF$ problem, say a formula F we have to map it to some instance of the V.C. problem, say $P(F)$ such that $P(F) \rightarrow G$ such that G has a vertex cover of size k iff F is satisfiable.

and P must be computable in polynomial time.