Parsing Context Free Grammar

1. \[S \to AB \mid BA \]
2. \[A \to BA \mid a \]
3. \[B \to cc \mid b \]
4. \[C \to xB \mid a \]

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>A, C</th>
<th>A, C</th>
<th>B</th>
<th>A, C</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>S, A</td>
<td>B</td>
<td>S, C</td>
<td>S, A</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>\emptyset</td>
<td>B</td>
<td>B</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>\emptyset</td>
<td>S, A,C</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>A, S</td>
<td>C</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

length_{i,j} : substring starting with x_{i\cdot j}

Eq. \[S_{1,1} = b \]

If \(S \not\Rightarrow S_{i,n} \)?

\(S_{i,j} : \) substring starting with \(x_{i\cdot j} \) of length \(j \)

If \(S \not\Rightarrow baaba \) then

either \(S \not\Rightarrow AB \Rightarrow baaba \)

\(\) \(\not\Rightarrow \) \(BA \Rightarrow baaba \)
What is the number of steps to fill up the entry ij?

$\begin{array}{c}
\hline
\vdots \\
\hline
\end{array}$

j^{-1} partials

$j \times m \times k$

$m = \max \text{ no. } j \text{ rules corresponding to a specific N.T.}$

For each rule we must check each path

$k = \# \text{ non terminals}$

Total time: $\sum_{j=1}^{n} (n-j) (j \times m \times k)$

$\leq mk \cdot n \cdot n^2$
\[\leq m \cdot k \cdot n^3 \]

is \(O(n^3) \) if \(m, k \) are constants.

Space: The entire table has to be retained \(O(n^2) \).

CYK algorithm
Function Approximation

Discrete function defined at integral points

Representation of the function \(g \) is \((0, g_0), (1, g_1), (2, g_2), \ldots, (m, g_m)\). m points can be stored, say \(f \)

Minimise the sum of the squares of the difference of \(f \) and \(g \).