Computing Fibonacci Nos.

i.e. given \(n \), compute \(F_n \)

where \(F_0 = 0 \) \(\quad F_1 = 1 \) \(\quad F_2 = F_1 + F_0 \) \(\quad \text{otherwise} \)

Method I: write the equivalent recursive program

Method II

\[
\begin{align*}
F_2 &= 0 + 1 = 1 \\
F_3 &= F_2 + F_1 \\
\vdots & \ldots \\
F_n &= \quad \text{(expression)}
\end{align*}
\]

Time for Method II

\(T^{II}(n) \): the no. of steps (instructions executed)

for computing \(F_n \) using Method II

About \(\frac{n}{2} \) iterations where in each iteration we sum two previously computed Fib nos.

\(\Rightarrow O(n) \) additions Space: 2 nos.
\[F_n = F_{n-1} + F_{n-2} \]

\[T^I(n) = T^I(n-1) + T^I(n-2) + 1 \]

- To compute \(F_{n-1} \) recursively.
- \(T(1) = 1 \), \(T(0) = 1 \)

\[T^I(n) = ? \text{ at least } F_n \text{ which is roughly } (1.6)^n \text{ additions} \]

Method I
Cost of addition?

In Method II, if you consider the last $\frac{n}{2}$ iterations, we are adding no. of size $\frac{n}{2}$ bits. Adding two b bit nos. takes $O(b)$ steps.

The last $\frac{n}{2}$ iteration cost $O(n)$ steps.

$\Omega(n^2)$ steps overall.

What is the min time to compute F_n?

Any algorithm must take time Ω (input size + output size).

$\Omega(n)$ is a lower bound for F_n.
\[
\begin{bmatrix}
F_i \\
F_{i-1}
\end{bmatrix} =
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
F_{i-1} \\
F_{i-2}
\end{bmatrix}
\]

\[
A^2 =
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
1 & 1 \\
1 & 0
\end{bmatrix}
\begin{bmatrix}
F_{i-2} \\
F_{i-3}
\end{bmatrix}
\]

\[
F_n = \left(A^n\right)_{1,1} \\
\]

What is the time to compute \(X^n\)

\[
X^n = \begin{cases}
(x^{\frac{n}{2}})^2 & \text{if } n \text{ even} \\
X \cdot (X^{\frac{n-1}{2}}) & \text{otherwise}
\end{cases}
\]

\[
\log n \text{ multiplications; but what is the size?}
\]

\[
|X^n| = n \log_2 x
\]