Data structure for Union-Find

Find(x)

Read the label of x

Union (C(x), C(y)) when C(x) \neq C(y)

m Findings and n unions

m = |E| n = |V|

What is the max no. of label changes for some vertex x, say \(n(x) \)?

Total cost of n unions \(\leq \sum_{x \in V} n(x) \)
\[n(x) \leq \log n \]

So total cost of \(m \) Finds and \(n \) Unions is \(O(m + n \log n) \)

\[O(1E1 + |V|) \]

The total cost of basic greedy for MST is ordering edges by weight \(O(|E| \log |E|) \)

\[+ O(|E| + |V| \log |V|) \]

\[\text{If } |E| \geq |V| \log |V|, \text{ i.e. (slightly dense graph)} \]

\[O(|E|) \]

Goal: Alternate Union-Find data structure with improved performance on Unions

FF UF FU UF FF FF FF FF FF FF

Union-Find SPFA will be more general
How do we represent sets?

We will use trees to represent sets.

Base case: singleton vertices (elements), the root has "rank" $= 0$.

Find

$\text{Find}(x)$ move to the root using parent pointers and report the label

$\text{Cost}: \text{length of the path from } x \text{ to root}$

$\text{Union}(T_1, T_2)$

$\text{Cost} O(1)$
Union by rank heuristic

- Make the root with smaller rank the child of the other root (no change in rank)
- Otherwise, choose arbitrarily

increment the rank of the final root

Obs

1. A root node with rank \(r \) has at least \(2^r \) descendants

(Rank is related to the maxm distance from any leaf node to the root)

Consequence is that Find takes at most \(O(\log n) \) steps
Cost of \(m \) Finds and \(n \) Unions is bounded by \(O(m \log n + n) \)

2. The no. of nodes with rank \(n \) is bounded by \(\frac{n}{2^n} \). Note that once a node ceases to be a root during the course of Union Find, its rank is fixed and never changes in future. (This node never becomes a root node)

3. The ranks increase monotonically in any path from leaf to root node.

Path compression heuristic

\[O \left((m + n) \log^* n \right) \]

\[\log^* n = \min \left\{ i \mid \log \left(\log \left(\ldots \left(\log n \right) \right) \right) \leq 2 \right\} \]