CSL 356
Algorithm Design & Analysis

→ www.ece.iiitd.ernet.in/jussenn
 Sandeep Sen ph. 428

CSL 201 : Data Structure
Discrete Str. & Recurrence
elementary Discrete Probability

Lecture Notes (Reference books)
→ ① Dasgupta, Papadimitriou & Vazirani
→ ② Cormen, Leiserson, Rivest S
→ ③ Aho Hopcroft & Ullman
→ ④ — & Tardos

2 Minor
20% each

40% 3

2017.
1. Can we design an *algorithm* for any "problem"?
 (computational)

* Properties
 1. must be correct for all inputs
 2. must terminate

Answer = "No"
 → Goedel Incompleteness Thm
Tiling Problems

Proving Correctness of Programs (using programs)

code \rightarrow \text{Specification} \rightarrow \text{Output} \rightarrow \text{Y/N}
Designing of "Efficient" algorithms

Running Time Space

Time Complexity Space Complexity

Measure/Estimate of time/space the program takes and often expressed as (asymptotic behavior) functions of input size using 'O' - Big Oh notation:

\[O(n^2) \quad O(n^3 \log^3 n) \quad \ldots \]

\[O(n^2 + n \log n) \sim O(n^2) \]

Design and then analyze
Computational Model

1 processor? -> multiple processors

$O(n^2)$ $O\left(\frac{n^2}{p}\right)$

processors

-> what are capabilities of a processor

 basic instruction set

 clock speed

Computing the n^{th} Fibonacci No

$F_0 = 0$ $F_1 = 1$ $F_i = F_{i-1} + F_{i-2}$