
Re-weighting techniques

Shobhit Saxena

November 28, 2006

These notes discuss some problems in computational geometry and demon-
strate the utility of reweighting techniques in solving them.

1 The Set Cover Problem

1.1 Problem definition

Given a set of points P in a plane. Determine the optimal set of disks which
cover all these points. The radii of disks are bounded by a fixed constant value.

This is essentially a set cover problem. Let |P | = n. Then if k is the size
of the optimal solution (number of disks), a greedy approach exists which can
provide an O(log n) approximation, i.e., it outputs O(klogn) disks which fully
cover all the points of P.

Theorem 1.1 In geometric settings, the set cover problem can be solved to an
O(log k) approximation.

1.2 The basic algorithm

Let D be the set of all disks (Each relevant disk can be defined by 3 points from
P). Let |D| = m. Let w(d) denote the weight of a disk d ∈ D. For p ∈ P , define
U(p) = {d|d ∈ D, d covers p}.

1. Set W (d) ← 1,∀d ∈ D

2. Select a random set of disks R from D, of size r, according to the weights
of the disks.

3. If R covers the set P , then report the answer as R and exit.

4. Else if p ∈ P is a point not covered by R, perform step 5 for each d ∈ U(p).

5. w(d) ← w(d) ∗ 2

6. Continue to step 2.

Figure 1: The set cover problem

1.3 Analysis

If the size of the optimal solution is k, let r = O(k log k). While randomly
picking R, we make sure that R is actually an ε − net. If R is not an ε − net,
then the number of iterations go up by a constant factor only. So we assume
we always pick an ε− net.

Let Wi be the sum of weights of all the disks d ∈ D after ith iteration.
W0 = |D| = O(n3). Then,

Wi+1 = Wi + The weight added ≤ Wi + εWi = (1 + ε)Wi

Thus, Wi = (1 + ε)i
O(n3) = O((1 + ε)i

n3)

In every iteration, we are increasing the total weight of the optimal solution.
This happens in a round-robin fashion for the various disks in the optimal
solution.

Let Sopt ⊆ D be the optimal solution. We have |Sopt| = k. If Wi denotes
the weight function at the end of ith iteration, then

Wi(Sopt) =
∑

d∈Sopt

Wi(d)

=
∑

d∈Sopt

2nd , where nd is the number of times weight of d was doubled

≥ k 2i/k

Thus we have the lower and upper bounds on the weight of the optimal
solution. We now need a suitable value of ε to satisfy the following condition:

k2i/k ≤ O((1 + ε)i
n3)

With ε = 1/8k, this condition is satisfied. The algorithm takes O(k log n) steps
and the size of the solution is r = O(1

ε log 1
ε) = O(k log k).

2

Figure 2: Crossing distance

2 MST Based on Crossing Distance

2.1 Problem definition

Given a set of points P in a plane, |P | = n. Define L as the set of
(
n
2

)
lines

defined by points in P . The crossing number of an edge is defined as the number
of lines from L intersecting this edge. We are looking for a spanning tree with
the lowest total crossing number.

2.2 The Algorithm

Let W (l) denote the weight of line l ∈ L. Then the algorithm proceeds as
follows:-

1. Initially set W (l) ← 1 ∀l ∈ L

2. Pick two points which have the smallest weighted crossing distance (sum
of the weights of the lines that cross the edge formed by these two points)

3. Double the weights of the lines in L which cross this edge.

4. Continue to point 2, until a spanning tree has been obtained.

2.3 Analysis

Lemma 2.1 Let L be a set of W lines and P be a set of n points. Then there
are always two points p, q ∈ P such that they cross at most c W√

n
lines, where c

is a constant.

Proof:
Define b(x, r) as the set of all vertices at a crossing distance at most r from x.
We first claim that |b(x, r)| ≥ O(r2). This is because there is always a direction

3

Figure 3: Getting b(x, r)

from x which will cross at least W/2 lines. We move along this direction and
cross r/2 lines. For each of these lines, we now move along these lines and expect
to cross at least r/2 vertices in one of the directions, thus giving r2/4 vertices.
A careful observation about picking duplicate vertices puts this number at a
value of r2/8.

With W unweighted lines, we have
(
W
2

)
vertices. When n r2

8 > W 2

2 , then
there exist two vertices p, q ∈ P , such that they each have a common vertex x
at a crossing distance < r from each of them. This implies that the crossing
distance between p and q is then < 2r. Clearly then, we have r = 2W√

n
and so

we have two vertices at a distance < 4W√
n

from each other.
This time we have W0 = |L| = O(n2). Now,

Wi+1 = Wi + The weight added = (1 +
4√

n− i + 1
)Wi

The n− i+1 in the denominator is due to the reason that the number of points
keep on reducing by 1 in every iteration.

⇒ Wi+1 ≤ exp(
4√

n− i + 1
)Wi

⇒ Wn ≤ n2exp(
4√
n

+
4√

n− 1
+

4√
n− 2

+ · · ·+ 4√
1
) ≈ n2exp(O(

√
n))

We now show a property that if we pick any line, it cannot cross a very large
number of spanning tree edges. For a line l ∈ L, let k(l) = the number of edges

4

Figure 4: Range searching

it crosses. Then, W (l) = 2k(l) ≤ n2exp(O(
√

n)) ⇒ k(l) ≤ O(log n +
√

n) =
O(
√

n). Thus a line l cannot cross more than O(
√

n) lines.

3 Range searching

In this section we illustrate an application of minimum crossing number span-
ning trees, called range searching.

3.1 Problem statement

Given a set of points P in a plane. Given a query line, report the number of
points on one size of this line.

3.2 The approach

Define a path Π which spans all the points of P , such that every line crosses it
O(
√

n) times. Such a path can be obtained using the minimum crossing number
spanning tree, by using shortcut edges, as shown in the figure.

We create a data structure using this path. We arrange the points in Π in a
line, in the order of their appearance in Π. We subdivide these points into two
equal subsets based on their position in the path (former and latter halves). For
each half, we store its convex hull and the number of points the half contains.
We do the same process recursively for these halves, to generate a binary tree
structure.

When answering a query, we check if the query line intersects the convex
hull at the root node. If it doesn’t, we determine the side at which all these
points lie and accordingly include or exclude their count in the final answer. If,
however, the convex hull is intersected by this query line, we go down this node
and recursively follow the same procedure with its children nodes.

5

Figure 5: Getting the path Π

An alternative mechanism to do the same is to mark the points making up
those edges of Π that are intersected by the query line. Now if a node contains
two or more marked points, only then do we go down this node. Otherwise we
can directly decide whether to include the count of the number of points at the
node into our answer or not.

The total query time is O(
√

nlog n), since it takes O(log n) time to check a
line’s intersection with a convex hull and we have to do this O(

√
n) times. The

total space requirement is O(n log n) and the pre-processing time is O(n log2 n).

6

