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Voronoi Diagrams

In this lecture, we study Voronoi Diagrams, also known as Thiessen Diagrams or
Dirichlet Diagrams. The concept of Voronoi diagrams is developed in section 2
followed by a divide-and-conquer algorithm to construct them in section 3. We
start with the Post Office problem in the following section 1, which leads in to
the development of Voronoi diagrams.

1 Post Office Problem

The Post Office problem is defined as

Problem 1. Given a set S of n points in a plane, we want to construct a data
structure that supports queries of the kind - “For a query point ¢, which is the
closest point in S from q?”.

If the points in S are uniformly distributed, a reasonable approach would be
to use a grid-based structure. Thus, with a \/n X y/n grid, we have, on an average,
1 point per square, hence, a constant query time complexity on expectation. This
is similar to the grid-based method used for the closest pair problem.

For a general distribution of points, in 1 dimension, an effective approach
would be to just sort all the points and performa binary search to answer a
query. Here, the query time is O(logn). The space complexity would be O(n)
and preprocessing time O(nlogn).

Moving to 2 dimensions, we start with a case where there are only two points
in S. The division of the plane in to the regions of influence of each point is
obtained by the perpendicular bisector of the line joining the two points. Thus,
once we have the division of the plane in to the two regions of influence, we can
determine which region a point lies in by answering a point location query, as
was discussed in the previous topic. We can easily extend this idea to 3 points by
constructing the perpendicular bisectors of each pair of points. We notice that
the 3 bisectors intersect at a single point (since, the 3 points form a triangle)
which is the circum-centre of the 3 points. These two cases are depicted in Fig. 1.
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Fig. 1. Planar subdivision into regions of influence of individual points for the cases
(a) n=2, and (b) n=3.

2 Voronoi Diagrams

We make a further assumption that no 4 points in the set .S are co-circular. Now,
proceeding in the manner devised above for the simple cases of 2 and 3 points,
we can extend this technique of planar subdivision to any general n > 2 by
constructing perpendicular bisectors for each pair of neighbouring points. Two
points are considered to be neighbouring if the segment joining them does not
intersect any other segment smaller than itself. This definition of neighbourhood
ensures that the subdivision generated is planar. Such a planar subdivision is
called a Voronoi Diagram or Dirichlet diagram or Thiessen diagram. The seg-
ments of division are called the Voronoi edges and the points of intersection of
these edges, the Voronoi centres. Each planar face of the subdivision is called
a Voronoi region and each Voronoi region can be associated uniquely with a
point of the input set S. Thus, a Voronoi region of a point signifies the region of
influence of the point on the plane, given the other (n-1) points of S. Figure 2
shows an example Voronoi diagram.
Some important features of Voronoi diagrams are:

— Voronoi region of a point, p; € S, is N;jx;H;j, where H;; is the half-space
containing p; and defined by the perpendicular bisector of p; and p;. Thus,
Voronoi regions are the intersections of half-spaces.

— Voronoi regions are convex regions, since, they are the intersection of convex
regions.

— Since, it is a planar subdivision of the space, therefore the number of Voronoi
vertices, edges, regions are all linearly related i.e. O(n)

Once a Voronoi diagram is created, a point location structure can be created
to solve the post office problem.
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Fig. 2. An example Voronoi diagram showing Voronoi regions, edges and centres

The dual of a Voronoi diagram is a Delaunay triangulation. The dual is
obtained by denoting every face by a vertex and adding an edge between two
vertices if the two corresponding faces are adjacent. Delaunay triangulation has
the good property of producing fat triangles i.e. all the angles of the triangle are
maximized. Delaunay triangulation has very useful application in finite element
methods, surface reconstruction problems etc. Thus, Voronoi diagrams are useful
as a means to construct its dual and since, they are planar subdivisions, therefore,
the dual can be constructed in O(n) time and vice versa. However, due to the
development of efficient, direct divide-and-conquer algorithms for constructing
the Delaunay triangulation of a set of points, this approach of first creating the
Voronoi diagram and then its dual is not used in practice due to the overhead
of storing the Voronoi diagram.

Construction of Voronoi diagrams

A Voronoi diagram for a set, S, of n points can be constructed by computing the
intersection of n half-spaces. We know that the intersection of 2 half-spaces is a
dual of convex hulls and therefore, takes O(n) time. Thus, we can easily construct
the Vornoin diagram in O(n?logn) time and with certain minor modifications
in O(n?) time. However, we aim to achieve the construction in O(nlogn) time.
For this, we use a divide-and-conquer approach, detailed in the next section.

3 Divide-and-Conquer Algorithm for Construction of
Voronoi Diagrams

We wish to use the divide-and-conquer paradigm to construct a Voronoi diagram
for a set, S, of n points in O(nlogn) time. We know, that the recurrence relation



established by a divide-and-conquer approach is of the form
T(n)=2xT(n/2)+ f(n)

, where, f(n) is the time taken to merge the two half solutions at each step. Thus,
to achieve O(nlogn) time complexity, the merge operation must be performed
in O(n) time. Thus, a divide-and-conquer algorithm essentially deals with an
effecient method of merging, while the divide step can be done easily in O(n)
time by dividing the points in to two halves, L and R, about the median x-
coordinate.

Thus, the set S has been divided in to two equal halves, L and R, as depicted
in fig. 3(a) with L containing all points to the left of the median x-coordinate and
R containing all points to the right. Further, we assume that, by recursion, the
Voronoi diagrams of L and R, V(L) and V(R) have been constructed (fig. 3(b)).
For the base cases, where S contains 2 or 3 points, the Voronoi diagram can
be made by perpendicular bisector construction, as outlined earlier. By visual
inspection, we notice that we can create a chain about the join of L and R,
which is the locus of points equidistant from a point in L and a point in R.
Importantly, we claim that the line segments in this chain are the new edges
of the Voronoi diagram V' (S) i.e. V(L U R). And, the edges of V(L) and V(R)
remain in V(L U R) except for those which are intersected by this chain. We
prove this claim in the following.
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Fig. 3. 3(a) shows the division of S into L and R about median x-coordinate. 3(b)
shows the individual Voronoi diagrams V(L) and V(R) of L and R overlaid together.

Let,
C denote the set of points equidistant from a point in L and a point in R,



dist(p, L) = the distance of a point p to the closest point in L, and,
dist(p, R) = the distance of a point p to the closest point in R.

Lemma 1. C consists of all those Voronoi edges of V(LU R) which are defined
be a pointl € L and a point r € R and the edge is defined by | and r.

Proof. Let H(L) and H(R) denote the set of Voronoi edges of L and R. Suppose
a point p has as its nearest left neighbour [ € L and its nearest right neighbour
r € R and is equidistant from ! and r, then it should belong to H(L U R),
since, otherwise, it has exactly one point as its nearest neighbour, contradicting
equidistance from [ and r.

Also, let e be an edge of H(L U R) that is defined by [ € L and r € R. By
definition of a Voronoi edge, e is a segment of the perpendicular bisector of Ir.
Thus, all points on e are equidistant from [ and r and hence, e € C. a

Lemma 2. C is monotone, i.e. if we direct all edges upwards (or all downwards)
then no arrowheads are incident on the same point and C is not disjoint.

Proof. We show the validity of the claim by some case analysis. We consider cases
that contradict Lemma 2 and show that such cases cannot occur. We essentially
show that C' is a linearly circular group.
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Fig. 4. Proof of lemma 2 by case analysis. 4(a) Case 1, 4(b) Case 2, 4(c) Case 3. Solid
edges refer to edges which are both Voronoi edges as well as part of the chain C. Dashed
edges refer to edges which are Voronoi edges but are not part of C.

Case 1. See fig. 4(a). If p; € L, then py € R since e13 € C. Now, if p3 € R, then
since py and ps both lie on the same side, ea3 ¢ C, which is a contradiction.
And, if p3 € L, then since now p; and ps both lie on the same side, e3; ¢ C,
which is also a contradiction. Thus, this case cannot occur.

Case 2. See fig. 4(b). If p; € L, then ps € R since e1a € C. Thus, due to
eo3 € C, p3 € L. However, this is not possible since both pi,p3 € L and p» € R
lies between them. Thus, this case cannot occur.



Case 3. See fig. 4(c). If p1 € L, then ps € R since ej2 € C. Now, since ea3 ¢ C,
therefore ps € R. However, then es; € C, which is a contradiction. Thus, this
case cannot occur.

and so on.
O

Thus, we see that to merge V(L) and V(R), we can construct C and thus
V(LUR) = CU(V(L)UV (R))\(set of edges of (V(L)UV (R))which are intersected by C')

Now, we describe the method by which the chain C' can be costructed.
To construct the chain C,

1. Start from the pair of points that define the lower tangent (or upper tangent)
of the convex hulls of L and R.

2. Make the edge consisiting of the perpendicular bisector of the two points
extending to —oo.

3. Each time this edge hits an existing edge, one of the pair of equidistant
points changes. If the existing edge hit is € V(R) then current r changes,
else current [ changes.

— Make the edge equidistant to this new pair of points. Add this edge to
C.

4. Continue in the above manner up till the upper tangent (or lower tangent)

of the hulls of L and R is reached.

The above technique requires that we use an efficient method of keeping track
of which edge is intersected by C' next. This is described below.

1. Denote 2 escort edges, ee; and ee, , one each from V(L) and V(R).

2. Initially, ee; «+ edge denoted by ! in V(L) which intersects C first and ee, «—
edge denoted by r in V(R) which intersects C first.

3. Repeat

(a) Walk along the escort ee; and shoot a ray from C' to find the point of
intersection.

(b) If this point of intersection is ahead of the end point of ee; then take a
right turn i.e. ee; < next edge of V(L) which shares that end-point and
is to the right of current ee;

(¢) until the point of intersection lies on ee;

4. Repeat

(a) Walk along the escort ee, and shoot a ray from C to find the point of
intersection.

(b) If this point of intersection is ahead of the end point of ee, then take a
left turn i.e. ee, «— next edge of V(R) which shares that end-point and
is to the left of current ee,

(c) until the point of intersection lies on ee,

5. Choose i as that point of intersection out of 4; and i, that has lower y-
coordinate.
6. Change escort edge for the one corresponding to ¢ and repeat this process.



Time Complezity. Step 3 above ensures that each edge is traversed only once,
since each escort edge once rejected is never required again. Thus, the merg-
ing algorithm is O(n). Thus, the entire divide-and-conquer algorithm runs in
O(nlogn) time.

In the next lectures, we will continue the discussion on Voronoi diagrams and
their construction based on the property of intersection of half-spaces using a
lifting transform. However, it must be noted that, the algorithms discussed ahead
as well as the direct divide-and-conquer algorithm have asymptotically optimal
time complexity of O(nlogn)



