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Range Queries 
 
One Dimensional Range Searching 
 
*Given a one dimensional space, query asks for the points inside an interval [x:x]’. 
Let P = {p1, p2,…., pn} be the given set of points on the real line. We can solve the 1-
dimensional range searching problem using a balanced binary search tree T . The leaves 
of T store the point P and internal nodes of T store splitting values to guide the search. 
Let the value at node v is xv. Left subtree of a node v contains all the points smaller than 
of equal to xv and right subtree contains all the points strictly greater than xv. 
 
To report the points in the range query [x:x’] we search with x and x’ in the tree T. let u 
and u’ be the leaves where the searches end. Then the points in the interval [x:x’] are 
ones stored between the leaves u and u’. e.g. search with the interval [18:77] –  

 
 

Start from the root and recursively call the function on the left and right subtree if it 
satisfies certain conditions. It’s easy to see that we can build a balanced tree using median 
as the split vertex. 
 
Complexity: - The tree takes O(n) space and O(log n) time in preprocessing. Each query 
take O(log n + k) time. Where k is the number of favorable cases. 
 
2 Dimensional Range Queries 
 
Each point has two values: its x coordinate and its y coordinate. Therefore we split on x-
coordinate and next on y-coordinate, then again on x coordinate and so on. In general we 
split with a vertical line at nodes whose depth is even and we split with a horizontal line 
at nodes whose depth is odd. The time to build the 2-D tree is as follows. 

 



 
The median can be found in O(n) time. Time to build the 2-D tree is 

 
Thus T(n) = O(n log n) and space required is O(n) = O(number of elements in the 
dataset) 
 
The region corresponding to a node v is a rectangle which can be bounder or unbounded 
on one or more sides. For example :-  

 
Thus we have to search the subtree rooted at v iff the query rectangle intersects region(v). 
We traverse the 2-D tree, but visit only nodes whose region is intersected by the query 
rectangle. When a region is fully contained in the query rectangle, we can report all the 
points stored in its subtree. When the traversal reaches a leaf, we have to check whether 
the point stored at the leaf is contained in the query region and, if so, report it. The grey 
nodes are visited when we query with the grey rectangle. The node marked with a star 
corresponds to a region that is completely contained in the query rectangle; in the figure 
this rectangular region is shown darker. Hence, the dark grey subtree rooted at this node 
is traversed and all points stored in it are reported. The other leaves that are visited 



correspond to regions that are only partially inside the query rectangle. Hence, the points 
stored in them  

 
Must be rested for inclusion in the query range; this results in points p6 and p11 being 
reported, and points p3, p12 and p13 not being reported. 
 
Search(Q, v) 
 If vR Q∈ then report points in Rv 
 Else 
  Let l

vR  and r
vR  be rectangle associated with the children 

  If l
vR Q φ≠∩  

   Search( , l
vQ R  )  

  If r
vR Q φ≠∩  

   Search ( , r
vQ R  ) 

 
Let Q(n) be the number of interested region in 2-D tree storing n points. To write 
recurrence for Q(n) we go two step down in the tree. Each of the four nodes at depth two 
corresponds to a region containing n/4 points. Two of the four nodes correspond to the 
intersected region, so we have to count the number of interested region the subtree. 
Hence Q(n) satisfy the recursive equation :- 

 
This recurrence solves to Q(n) = (log )O n  
 
 
 



Range Trees:- 
 
2-D trees have use less space but have high query time. Range tree have higher space 
complexity O(n log n) but have low query time of O(log2n + k) for two dimensions and 
O(logdn + k) for d-dimentions. 
 
Let [x:x’] * [y:y’] be the range query. We first concentrate on finding a point whose x – 
coordinate lies in [x:x’] and worry about y coordinate later. Thus this query is exactly 
similar to the query in 1-Dimension. Lets call the subset of points stored in the leaf of the 
subtree rooted at a node v the canonical subset of v = P(v). We are not interested in all the 
points in P(v) but only in those points whose y-coordinate lies in the range [y:y’].  Thus 
we can solve this provided we have a binary search tree on y-coordinate v. 
For any internal or leaf node v in T, the canonical subset P(v) is stored in a balanced 
binary tree Tassoc(v) on the y-coordinate of the points. The node v stores a pointer to the 
root of Tassoc(v) whish is called the associated structure of v. 

 
A range tree on a set of n points in a plane requires O(n log n) space. 
Because a point can appear in one of the associated structures in a row and there are 
O(log n) row. The space required is O(n log n). 
 
A search query takes O(log2 n + k) time. 
In an Associated structure it takes a maximum O(log n + k’) time. Since there can be 
maximum O(log n) subtree be search for, the query takes O(log2 n + k) time. 
 
For d -Dimensions 
 
Let P be the set of n points in d-dimensional space, where d ≥ 2. A range tree for P uses 
O(n log d-1 n) storage and it can be constructed in O(n logd-1 n) time. One can report the 
points in P that lie in a rectangular query range in O(logd n + k) time, where k is the 
number of reported points. 


