Partition Problem

Problem:Given n points in space and given a query
line 1 we have to report the points which lie below the
query line 1.

Make a convex hull of the given set of points.Find
the intersection of line |1 with the convex hull.If the line
doesn’t intersects the hull then take any point on the
hull and find if it lies above or below the line 1 and thus
conclude that none or all points lie below 1 respectively.

If the line intersects the hull then divide the set into
parts and make convex hull of both the parts and again
check the above condition for line and hull. Thus build
a binary tree for this recursive algorithm.It has been
poproposed that atmost O(n%) nodes are there at any
level. Thus the number of nodes to be visited is O(n%



max esber of modzs visited at sy

zvzl iz sartln)

logn)

Query Time: The total query time is O(logn) time
the number of nodes visited which is O(n2 logn?)

Space: Solving the recurrence T(n)=n + 2T(3) the
space requirement comes out to be O(n logn).

Open problem:Show that for any point set P in th?

plane 3 a tree T such that a line | crosses at most wp
log wﬂl edges of T , where w; is weight of 1.



Simplicial partition: A set of triangles in the given
space of points such that each point is in atleast one
triangle.

Crossing number: Maximum number of triangles
intersected by a line.

Then > a fine simplicial partition of size r whose cross-
ing number is O(rz). This is another solution of the
above problem where the the space containing n points
is divided into r triangles such that they form a simpli-
cial partition.Now to report the number of points below
a given query line we check the intersection of query line
with each triangle.

Now it is proposed that the line can intersect only re
trinagles and each triangle can have atmost 27” points.Now
with each trinagle it intersect we again apply the same
rule treating this triangle as our new space.Thus we have:

Query time: Q(n)=r + 72 Q(*%) which solves to
O(nz (logn)?) 1

Space: M(n)=n + r2 M(#2) which solves to O(nlog n)



