Partition Problem

Problem:Given n points in space and given a query line l we have to report the points which lie below the query line 1 .

Make a convex hull of the given set of points.Find the intersection of line l with the convex hull.If the line doesn't intersects the hull then take any point on the hull and find if it lies above or below the line 1 and thus conclude that none or all points lie below 1 respectively.

If the line intersects the hull then divide the set into parts and make convex hull of both the parts and again check the above condition for line and hull.Thus build a binary tree for this recursive algorithm. It has been poproposed that atmost $\mathrm{O}\left(n^{\frac{1}{2}}\right)$ nodes are there at any level.Thus the number of nodes to be visited is $\mathrm{O}\left(n^{\frac{1}{2}}\right.$

$\log n)$
Query Time: The total query time is $\mathrm{O}(\log n)$ time the number of nodes visited which is $\mathrm{O}\left(n^{\frac{1}{2}} \log n^{2}\right)$

Space: Solving the recurrence $\mathrm{T}(\mathrm{n})=\mathrm{n}+2 \mathrm{~T}\left(\frac{n}{2}\right)$ the space requirement comes out to be $\mathrm{O}(\mathrm{n} \log n)$.

Open problem:Show that for any point set P in the plane \ni a tree T such that a line 1 crosses at most $w_{l}^{\frac{1}{2}}$ $\log \frac{n}{w_{l}}$ edges of T , where w_{l} is weight of 1 .

Simplicial partition: A set of triangles in the given space of points such that each point is in atleast one triangle.

Crossing number: Maximum number of triangles intersected by a line.

Then \ni a fine simplicial partition of size r whose crossing number is $\mathrm{O}\left(r^{\frac{1}{2}}\right)$. This is another solution of the above problem where the the space containing n points is divided into r triangles such that they form a simplicial partition. Now to report the number of points below a given query line we check the intersection of query line with each triangle.

Now it is proposed that the line can intersect only $r^{\frac{1}{2}}$ trinagles and each triangle can have atmost $\frac{2 n}{r}$ points.Now with each trinagle it intersect we again apply the same rule treating this triangle as our new space. Thus we have:

Query time: $\mathrm{Q}(\mathrm{n})=\mathrm{r}+r^{\frac{1}{2}} \mathrm{Q}\left(\frac{2 n}{r}\right)$ which solves to $\mathrm{O}\left(n^{\frac{1}{2}}(\log n)^{2}\right)$

Space: $\mathrm{M}(\mathrm{n})=\mathrm{n}+r^{\frac{1}{2}} \mathrm{M}\left(\frac{2 n}{r}\right)$ which solves to $\mathrm{O}(\mathrm{n} \log n)$

