
Computational Geometry

Lecture - 13, 14

Tarun Garg - 2009MCS2085 ∗

September 3, 2010

1 Lower Bounds For Geometric Problems

1.1 Element Uniqueness Problem

Given n elements(x1, x2, ..., xn). Determine if all of them are unique or there is a repetition. It

is a kind of decision problem because here we just want to know whether all the elements are

unique or not irrespective of that which elements are repeated. Decision problems have answers

only “yes” or “no”.

Suppose ∀i, xi ∈ {1, 2, ..., n}. So by using the array of size n (Indirect addressing or Hashing)

we can solve this problem in O(n) time. Similarly if ∀i, xi ∈ {1, 2, ..., nc} then also we can solve

this problem in time O(n) using Radix Sort, where c is constant.

But if c is not constant or ∀i, xi ∈ R(set of real numbers), this problem can be solved by

sorting the n elements in time O(n log n). So Element Uniqeness problem is reducible to Sorting

problem. Hence lower bound of Element Uniqueness problem applies to Sorting.

Lower bound of sorting assumes a certain model of computation. This model is Comparision

Tree model. Each node in the tree corresponds to a comparision(< or ≥). Each leaf node

corresponds to a specific ordering of comparision

⇒ Number of leaves in tree ≥ n!

⇒ Length of the longest path in tree ≥ log2(n!) ≈ Ω(n log n)

A simple comparision is like whether (xi − xj) ≥ (0 or not). But a general inequality could

be a1xi + a2xj + b ≥ (0 or not).

Model of computation for element uniqueness problem is Linear Decision Tree. Each node

corresponds to some linear inequality. Each leaf node is attached with either “yes” or “no”

answer, depending upon all the elements are unique or not.

In element uniqueness problem we are given a set of n elements. Consider this set as a single

point in n-demensional space i.e. Rn. Let some subset W ⊂ Rn contains all the “yes” answers

and the complement Rn −W contains all the “no” answers. So this complement set Rn −W is

set of all hyperplanes defined by xi = xj but i 6= j, where xi and xj are ith and jth axis of the

n-demensional space. Hence if any point lies on any of these hyperplanes then answer is “no”

∗Department of Computer Science and Engineering, IIT Delhi, New Delhi 1100116, India.

1



otherwise answer is “yes”.

Consider a 3D space containing x, y and z axis. Here 3 hyperplanes(x = y, y = z and z = x)

contain all the “no” answers. These 3 planes divide the space R3 into 6 regions(because x = y

and y = z so it follows x = z that means x = z has to pass through the intersection of x = y

and y = z). Each region corresponds to one of the 3! = 6 ordering of the 3 elements.

If we consider n-demensional space then there will we n! regions corresponding to each per-

mutation. Each of these regions contains only “yes” answers. So here is a important observation

about linear decision tree:

Given any input point p ∈ Rn, we follow some path from the root node to some leaf node

⇒ Any decision tree also implies a partitioning of the Rn in the following way: “Each node

(leaf/internal) t corresponds to some subset w(t) ⊂ Rn, namely all points that pass through t”.

It means each leaf node corresponds to some partitioning of the Rn.

Now recall that if any leaf node corrsponds to “yes” answer then it must lie on one of the

the n! regions and if it corresponds to “no” answer then it must lie on one of the hyperplanes.

Consider the problem space prtitionig as shown in figure:

Here each straight line corresponds to one of the hyperplanes. Regions created by these lines

containes all the “yes” answers and lines corresponds to the “no” answers. Now a leaf node

can not correspond to cirlcle “c” as shown in figure because a leaf node can not contain both

“yes” and “no” answers. Even a leaf can not be a combination of circle “v” and “w”(contains

only “yes” answers) because in Linear Decision Tree every node is associated with a convex

region(intersection of linear inequalities). Thus every leaf node is associated to only one region

because of the convexity property. According to the above discussion the number of leaf node

must exceed the number of connected components of the solution space which in n!.

⇒ Runnung time or height of this linear decision tree is Ω(logw). Where w is number of

connected components in the solution space.

Therefore any element uniqueness algorithm using linear decision tree takes atleast O(n log n)

comparisions.

Let cosider this equation
∏

i 6=j(xi − xj) = 0 iff answer is “no”. If we use this kind of com-

putaion model then we do not need to compute any linear inequalities. Therefore our lower

bounds may change according the model we are using. So lower bounds need to be proved cor-

responding to the models.

2



Higher Degree Polynomial Inequalities: Consider a two degree polynomial inequality like this
x2

a2
+ y2

b2
≤ r2. If we have two such kind of inequalities then their intersection will be like as shown

in figure:

Here intersection is not a single connected component. Therefore a leaf of the linear decision

tree may belong to more than one region. So we can can not make simple argument that number

of leaf node must exceed the number of connected components of the solution space. Hence

the previously discussed lower bound does not hold here. There is a relation between degree

of inequalities and number of connected components corresponding to a node given by Milnor

Thom Bounds.

1.2 Application to Convex Hull

If we want the corner points of convex hull in sorted order then sorting can be reduced to convex

hull, therefore lower bound of sorting is followed by convex hull problem. But here are some

relaxed version of the convex hull problem whose lower bounds may differ:

1. Enumerate (in any order) the corner points of convex hull.

2. Given n points, do all points appear on the convex hull. This problem is a kind of Decision

Problem.

Version of convex hull problem that takes into account the output size:

Problem 1: Given a set of n points on a plane and a number h ≤ n, are there exactly h

points on the convex hull?

Problem 2: Cosider the figure as shown:

3



Here is a regular h-gon, a circle inscribed in the h-gon say CI and another circle circumscribing

the h-gon say CC . Now fix h points to be on the regular h-gon and the remaining n-h points

are choosen arbitrarily in the annular region between CI and CC . Are there h points on the

boundary of the convex hull?

Here all n-h points should lie in the wedges between h-gon and CI otherwise it will not be a

convex polygon. So number of ways to distribute the n-h points in h wedges are hn−h. Hence

lower bound for this problem is log(hn−h) or (n− h) log h.

Claim : Problem 2 can be reduced to problem 1 in linear time because for each point we

have to just check whether it lies between CI and CC or not which is a contant time operation.

Therefore the lower bound of Problem 2 also applies to Problem 1. So Problem 1 also has the

lower bound (n− h) log h.

2 Point Location Problem

A planar subdivision is a partition of plane into polygonal regions by a finite collection of line

segments whose pairwise intersections are restricted to segment end-points.

Point Location Problem: Given a planar subdivision S and a query point P, determine which

region of S contains P.

To solve this problem we need to build a data structure that supports queries of the following

kind “for a point P = (x′, y′), which region contains P”. We can make simple assumption that

P does not lies on any line segment.

Here each region is a simple polygon(not necessarily convex). If we represent each region

separately then finding regions adjacent to a given region will be O(n) time query which is not

desirable. We want to answer this kind of query in time O(number of adjacent regions). For this

we can simply maintain Doubly Connected Edge List(DCEL). In this structure we store oriented

edges around the vertex. Each vertex stores all the edges that incident on it in a counter clock-

wise manner.

Similar problem: Ray Shooting : Given a set of line segments(non-intercesting). Build a data

structure to support queries of the following form:

“If we shoot a ray, which line segment does it hit first.”

4



In figure if we shoot a ray from a point R as shown in figure then it will hit line segment (a,b)

first.

Point location problem is similar to a ray shooting problem. We can solve point location

problem as follows - shoot a ray vertically from point P, depending upon which line segment

it hits first, we can determine the region which contains point P. In the dynamic version of

algorithm, segments can be inserted or deleted. So our goal is to obtain:

1. A linear space data structure

2. Logarithimic query time (insert, delete etc.)

3. Optimal preprocessing/construction time

preprocessing time is least important among these because it occurs only once. There is

always a trade-off between space and query time but space is more important than query time.

Consider an example of a planar subdivision as shown in figure

Here all horizontal line segments are of equal length and are parallel to each other. To solve

point location problem, project all line segments on vertical axis and sort them. Now use simple

binary search to find the region which contains point P. Here space used is O(n), query time is

O(log n) and preprocessing time is O(n log n).

Consider another example of planar subdivision, where line segments are not parallel to each

other but have equal x-axis length as shown in figure:

5



In this case all the line segments are tilted but they are ordered because none of the line seg-

ments intersects with another line segment. So we can still apply binary search. If line segments

intersect or they are not of equal x-axis length then we can not apply binary search.

Using this strategy we can solve the original point location problem. Draw a vertical line on

each vertex of the planar subdivision as shown in figure:

Between two consecutive vertical lines vi and vi+1, there can not be any vertex of planar

subdivision(by definition). So within a slab the subproblem is similar to the problem as discussed

in earlier example. We can summarize the complete solution as follows:

Arbitrary planar subdivision can be partitioned into vertical slabs by drawing vertical lines

on each vertex(assume no two vertices lies on same vertical line). Now two binary searches suffice

for planar point location, one to determine which slab contains point and another within slab

to determine which region contains point. So query time for this solution is O(log n) however

space required can be Ω(n2). But if we see two consecutive slabs then change in number of

line segments is very small or constant. So instead of storing each slab separately we want to

somehow store the common information only once. For this we have a data structure called

6



Persistent Data Structure. This kind of data structure is used for storing similar kind of lists,

here in our case slabs. So using this data structure we can store information of all the slabs in

linear space and still support O(log n) query time.

7


