
CONVEX HULL ALGORITHMS

September 13, 2010

QuickHull

This is a divide-and-conquer algorithm, similar to quicksort, which divides the
problem into two sub-problems and discards some of the points in the given set
as interior points, concentrating on remaining points.

If we implement this algorithm, choosing at each stage the point farthest
from line joining left and rightmost points, then the recurrence we get is :

T(n) = T(l) + T(r) + O(n) , n being the total no of points, r the no of
points that lie to the right of perpendicular from point onto the line and l the
points to the left of it.

In such a case if the points are arranged in a much skewed fashion, i.e.
if always l >> r
then T (n) = θ(n2).

So we'll use randomization.

But �rst we see a deterministic algorithm which would be randomized later.

The steps of algorithm are as follows-

1. Pair the points arbitrarily. Denote the lines through these points by l1,
l2, ... ,ln/2.

2. Among these n/2 lines, �nd the line with median slope, say lm.

3. Now �nd the extreme point in orthogonal direction to lm, say pm and draw
a vertical line through it to partition the point set and divide the problem.

4. Prune some points using the following test :

• In left subproblem, consider a pair p1p2 (p2 being closer to the ver-
tical line). If pmp2p1 is a right turn, then we discard p2.

• Likewise in the right subproblem, if pmp2p1 is a left turn, then we
discard p2.

1

5. Call this algorithm recursively on the left and right subset of remaining
points(if there are some remaining points).

Observation :

For any pair p1p2that has slope less than (or equal to) lm and is to the left of
the vertical line from pm, the triplet pmp2p1will be a right turn and hence p2
can be discarded on the basis of the �turn test�.

Claim 1 :

When we call this algorithm recursively on the left and right sides of vertical
line, the maximum no. of points in a sub-problem can be 3n/4.

Proof :

In the worst case, it may happen that all points lie to one side of the vertical line
which, let us assume is the left side. So we have n/2 pairs of points on the left
side. Now since half of the pairs have slopes less than the median slope, so n/4
such pairs which make a right turn with pm. Hence n/4 points are discarded,
so maximum no of points that remain are 3n/4.

Hence the recurrence for running time of this algorithm in terms of input
and output points -

T(n,h) = T(nl,hl) + T(nr,hr) + O(n)
where n is total number of input points,
h is number of output points,
nl is the number of points remaining on the left side,
nr is the number of points remaining on the right side,

2

hl is the number of output points from the left sub-problem and
hr is the number of output points from the right sub-problem.

Also,

1. T(n,1) = c n (c is some constant)

2. nl , nr <= 3n/4

3. hr = h - hl - 1

4. nl + nr <= n

Since the above recurrence is not simple, we would guess and verify its solution
rather than solving it.

Claim 2 :

The solution of recurrence is T(n,h) = O(n log(h)) (for n >1)

Proof :

We'll prove it by induction. We will plug in the solution and verify that it holds.
T(nl,hl) = k nllog(hl)
T(nr,hr) = k nrlog(hr) = k nrlog(h-hl)
R.H.S. of the recurrence = k (nllog(hl) + nrlog(h-hl)) + cn
Since nl <= 3n/4 ,
R.H.S = k n (x log(hl) + (1-x) log(h-hl)) + cn (where 1/2 < x < 3/4)
Maximum value of R.H.S is obtained when hl=x h
R.H.S <= k n (x log(x h) + (1-x) log((1-x) h)) + cn
<= k n log(xh) + cn
<= k n (log(h) - log(4/3)) + cn
Now this maximum value of R.H.S must always be less than T(n,h)
=> k n (log(h) - log(4/3)) + cn <= k n log(h)
=> k >= c/(log(4/3))
If the above condition holds, then the solution of recurrence = n log(h) is

veri�ed.
Thus, the Running Time of this modi�ed Quickhull algorithm is O(n log(h)).

Comparison to Quicksort :

Here at each stage we are �nding the median slope. However if we truly emulate
quicksort, in quickhull we must not �nd the median slope but must choose any
random slope. Since in quicksort, if we choose a splitter at random, the running
time is expected O(n logn), similar result follows for randomized quickhull i.e.
the running time is expected O(n logn).

3

MergeHull

This algorithm works similar to merge-sort in the following way :

1. Partition the given set of points into two sets, say S1 and S2.

2. Recursively compute the convex hulls of the two sets, say CH(S1) and
CH(S2).

3. Merge the two small convex hulls, CH(S1) and CH(S2) to give the �nal
convex hull CH(S).

Now �rst let us assume that the partitioning of points is done in such a way
that there are exactly n/2 points in both sets and are linearly separable. For
this we would need to compute the median on the basis of x-coordinates. This
operation is O(n).

How do we do merging ?

1. First, �nd the lines that are upper tangent, and lower tangent to the two
hulls (the two red lines).

2. Then remove the points that are cut o� (lying between the upper and
lower tangents).

Finding Tangent Lines :

First we �nd the upper tangent in the following way -

4

1. Start with the rightmost point of the left hull, and the leftmost point of
the right hull and join them assuming this line is the upper tangent.

2. While the line is not upper tangent to both left and right halves do :

• If the line is not upper tangent to the left, move to the next counter-
clockwise point on the left convex hull and check.

• Else if the line is not upper tangent to the right, move to the next
clockwise point on the right convex hull and check.

Now how do we check whether the line is tangent to left and right

hulls ?

• If the points pCCW, pl, pr make a right turn then line is a tangent to left
hull.

• If the points pl, pr, pCW make a right turn then line is a tangent to right
hull.

In the same way, �nd the lower tangent.
So the entire process of �nding common tangents takes O(n) time.
So Mergehull works in T(n) = 2T(n/2) + O(n) + O(n)
T(n) = O(n log(n))

5

But what if the points are actually partitioned arbitrarily

and the two convex hulls are not linearly separable.

Now we merge using Graham's Scan. Since we have the two convex hulls we
have the points on boundary in order. So 1st we will �nd the upper hull.

• For this we take the ordered list of points lying on the upper half of CH1
and then the ordered list of points lying in the upper half of CH2 and
merge the two lists such that �nal list is also ordered on x. This operation
takes O(n).

• Then starting from the leftmost point we do Graham's Scan on the entire
list and get the upper hull in O(n).

• Similarly we �nd the lower hull. So the entire merge operation took O(n).

This implies that T(n) = 2T(n/2) + O(n)
So T(n) is again O(n logn).

Insertion Hull

This works very similar to insertion sort.

• We start with 3 points that de�ne a trivial convex hull, the triangle.

• Then we insert one point at a time, updating the convex hull, until we
have exhausted all n points.

6

Suppose we are considering point pi+1

• If the point falls within the interior of CHi (the convex hull of 1st i points),
then we ignore and move forward.

• Else we construct CHi+1 by �nding the two tangents from point pi+1.

Construction of tangents from a point :

Clearly, the points pi+1p1p2 make a left turn whereas the points pi+1p2p3
make a right turn. So the upper tangent intersects the hull at a point where the
turn switches from Left to Right. So we can do a binary search on the points
and �nd this point in O(logn). Similarly the lower tangent occurs at a point
where the turns switch from Right to Left.

But how do we check whether the point is in interior of the CHi or

not?

For �nding if the point is included in the convex polygon CHiwe will use a
generalization of Ray Shooting. The idea is to draw a horizontal line through
the point pi+1and �nd which two sides of CHiit intersects. If the point lies
between the two sides, it is in the interior of CHielse it lies outside CHi.

7

The steps of algorithm are :

• Find the points having the highest and lowest y-coordinates. Since the
points are given to us in a sequence as they appear in CHi, we can �nd
these points by doing binary search. So time taken is O(logn).

• Then break the sequence of points into two parts. One sequence contains
point from the highest to lowest and the other contains points from lowest
to highest, call them CHRand CHL. Find the two points in both lists
whose y-coordinates are just greater and just lesser than the y-coordinate
of point. The line segments,lLand lR formed by these two points in both
lists will be those line segments that are intersected by the horizontal line
through pi+1. Since the list contains points in a sorted order, �nding the
above mentioned points require a simple binary search. So again time
required is O(logn).

• Now check whether pi+1lies on the same side of both lLand lR. This can
be done by simply plugging the point into the equation of these two line
segments. If both give the same sign, then the point is on same sides
and is hence exterior to CHi else it lies in between the lines and is hence
interior. This step is clearly an O(1) step.

Thus we can solve the problem of point inclusion in CHiin O(logn).

Time Complexity of Insertion Hull :

We have seen that for a new point, checking its inclusion costs O(logn) and if
it is exterior then �nding two extreme tangents also costs O(logn).

So total running time, Tn = n * O(logn)

8

This implies Tn= O(n logn).

9

