
CSL 852 Computational Geometry
Midterm , Sem I 2010-11, Max 50, Time 2 hrs

Note (i) Write your answers neatly and precisely. You won’t get a second chance to explain what you have written.

(ii) Every algorithm must be accompanied by proof of correctness and a formal analysis of running time and space bound.

Feel free to quote any result from the lectures without proof - for any anything new, you must prove it first.

1. Given a set S of n line segments (mutually non-intersecting), construct a data structure that supports
a query of the following kind -
For any arbitrary point p, find the segment that lies immediately above p (called vertical ray shooting
query)
(i) Design a data structure based on segment trees that answers such queries quickly.
(ii) Bonus Can you present a scheme that answers the queries in O(log n) time ? (15 marks)
Construct a segment tree and within each node v build a data structure that supports vertical ray
shooting query for the segments stored in v, sy Sv. Since the segments in Sv are totally ordered (within
the interval spanned by v), we can do binary search using a above-below primitive in O(log n) steps.
So vertical ray shooting is done by first using a binary search in the x direction that identifies all
those nodes V such that ∪v∈V Sv are exactly those segments that intersect the vertical line through
the query point q. The set V is simply the search path of q in the segment tree. Then we do binary
searches in all nodes of V and report the closest segment in the upward direction. Overall it takes
O(log2 n) for query and O(n log n) space.

To improve the bounds, you can use line sweep to build the trapezoidal map of the set of line
segments using vertical visibility information during the line sweep process. Then build the Dobkin-
Kirkpartick planar point location data structure that can answer a query in O(log n) time. If we
know the trapezoid, we also know the vertical visbility segment. The preprocessing takes O(n log n)
time and the space is O(n) - the total size of all trapezoids.

2. LetM(S) denote the set of maximal points of a planar point set S. Denote L0 =M(S) and S0 = S
and let Si = Si−1 − Li−1 and Li =M(Si) for i ≥ 1.
You can think about Li’s as the maximal layers that are successively obtained by stripping away
the previous layers. Design an O(npolylog(n)) algorithm for computing all the maximal layers. (10
marks)
Do a line sweep in the decreasing order of x (i.e. sort the points on their x coordinate value) let this
sorted set be p′1, p′2 . . . p

′
n. Initialize L0 = p′n and as we sweep left, assume that we have inductively

computed the layers correctly till p′i+1. When we consider p′i then suppose the layers are L0, L2 . . . Lj

and let Y0, Y1, . . . Yj denote the highest y coordinates of the points in the respective layers.
Claim: p′i belongs to Lk iff Yk+1 > y′i > Yk if such a k exists or start a new layer j + 1 if y′i < Yj
Using a dynamic dictionary, this can be found in O(log n) steps and therefore the entire algorithm
takes O(n log n) time.

3. It is known that if the n input points are distributed uniformly at random in a unit disk then the
expected number of points on the hull is less than

√
n. Based on this property, design an O(n)

algorithm for convex hull. Note that the running time will be expected O(n) over the distribution of
the input points and not for the worst case input.
Hint: A subset of uniformly distributed points is also uniformly distributed in a disk and has the
same property. (10 marks)
You may think about the each point as being generated independently at random from the distri-
bution, so the first n/2 points have identical distribution to the last n/2. Therefore construct the
convex hull of the first n/2 points CH1 recursively and the remaining n/2 points CH2 recursively,
and merge them. Note that the expected number of points in CH1 and CH2 are O(

√
n. So we can
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construct the hull of the union of CH1 and CH2 in O(
√
n) steps - even though they may not be

linearly separable.
This leads to T (n) = 2T (n/2) + O(

√
n) where T () is the expected running time. The solution for

this is T (n) = O(n) and it can be verified by induction.

4. Let S = {p1, . . . , pn} be a set of n points in the plane so that no three of them lie on a line. The
farthest-point Voronoi diagram of S is planar decomposition of the plane into maximal cells so that the
same point of S is the farthest neighbor of all points within each cell. That is, it is the decomposition
induced by the cells

Vorf (pi) = {x ∈ R2 | ‖pix‖ ≥ ‖pjx‖∀j}.

(i) Show that Vorf (pi) is convex.

(ii) Show that Vorf (pi) is nonempty if and only if pi is a vertex of the convex hull of S.

(iii) Show that if Vorf (pi) is nonempty then it is unbounded.

(15 marks)

(i) Fix a point pi ∈ S, for any other point pj ∈ S, let h−j denote the half-space defined by the perpen-
dicular bisector of pi, pj , not containing pi. The Voronoi cell of pi, is the intersection of half-spaces
h−j , i.e., Vorf (pi) =

⋂
j 6=i h

−
j , and therefore it is convex. (3 marks)

(ii) Part A: If pi is a vertex of the convex hull of S, then Vorf (pi) is non-empty.
Since no three points of S are collinear, we can choose a tangent τ to the convex hull at pi that is
not parallel to any side of the boundary of the convex hull. Let ρ be the perpendicular to τ at pi.
As we move along ρ such that the distance to pi increases, we can find a point q on ρ such that the
disk of radius ||qpi|| contains every point of the convex hull, other than pi, in its interior.
So ||qpi|| ≥ ||qpj ||, for all i 6= j, so q ∈ Vorf (pi).
Part B: If pi is not a vertex of convex hull of S, then Vorf (pi) is empty.
Suppose for some pi that is not a vertex of convex hull of S, there is an x ∈ Vorf (pi). Let y be the
point of intersection of the ray −→xpi with the boundary of the convex hull of S such that y does not
lie on the segment xpi. Using triangular inequality, it can be shown that one of the two vertices v of
the convex hull that is adjacent to y is farther than pi from x. Contradiction.

(6 marks)

(iii) Following the same argument as in (ii), Part A, for any point pi on the convex hull we can find points
q on the perpendicular ρ such that q ∈ Vorf (pi), as we move away from pi along ρ. So the Voronoi
region is unbounded. (6 marks)
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