
CSL 852, Computational Geometry: Problem Set 3

1. Motion planning Given a scene with rectangular obstacles, and a disk of radius r, we would like
to find out a feasible path from an initial position to a final position (avoiding the obstacles).

Design and implement an efficient algorithm for this. You can use existing code for Voronoi Diagrams
and integrate with your algorithm.

Possible approaches:
1. You can grow the obstacles using Minkowski’s sum and compute the maximal connected regions.

2. Alternatively, you can approximate the obstacles by points on the boundary that are less than 2r
distance - denote this by S′. You can then compute the Voronoi Diagram V or(S′) and only retain
those edges in V or(S′) that at least r from the closest obstacle point. Now work with this sub-graph.
This has the disadvantage that the input size may blow up significantly but you can make reasonable
assumptions.

2. Given a set S of n points in the plane, design an efficient algorithm to find the largest empty circle,
that doesn’t contain any point of S and the center of the disk is within the CH(S).

3. Given a set S of n points in the plane, design an efficient algorithm to find the smallest enclosing
disk, that contains all point of S.
Hint: Use Randomized incremental construction and analyse carefully.

4. Given a set S of n points in the plane, design an efficient algorithm to find a disk D that encloses k
points (any of the k out of n points) and whose radius is no more than twice that of Do(n, k), the
smallest disk that contains k points. When k is Ω(n), show that your algorithm runs in O(n) time.
Hint: Prove the property that the smallest disk centered at q ∈ Do(n, k) that contains k points, will
be no more than twice the radius of Do.

5. For the 2d range search tree, we would like to modify the construction in the following way to save
space.
Instead of storing the points in every level, we will store the points in every t-th level, thereby
reducing the storage to O(n/t log n). Consequently, we cannot do the search for the y interval in
every node of every level but only in every t-th node of the search path (the canonical subintervals
of the x interval). How would you modify the range search reporting and obtain an exact expression
for the trade-off between search time and space in terms of t.

1


