CSL 852, Computational Geometry: Practice Problems

1. Dynamic Convex hull In many applications, we are required to maintain the convex hull of a set of points that could be changing over time, i.e., points can be inserted or deleted. Try to construct cases where a single insertion/deletion can lead to large changes in the size of the hull. Therefore, we can try to maintain an implicit representation of the convex hull so that we can report it in time $O(h)$ where h is the size of the present hull.
Describe all the details of maintaining a convex hull under a sequence of insertions and deletions such that the cost of each insert/delete operation is bounded by $O\left(\log ^{2} n\right)$ and the space of the data structure is $O(n)$. Moreover the data structure should also support query of the type - "Is a given point inside the convex hull?" in $O(\log n)$ time.
Hint: Devise a scheme based on a primary tree structure whose leaves correspond to the existing points and each internal node stores a data structure representing the upper/lower hull of all the points in the subtree rooted at that point. This data structure must support fast join and split operation also known as a concatenable queue. Each internal node contains a bridge (tangent) of the two linearly separable convex hulls of its two subtrees - it does not contain an explicit description of the convex hull to save space. Recall that such a bridge can be found in $O(\log n)$ steps. Argue that any insertion or deletion of a point can affect bridges along a single root-leaf path of this tree and the corresponding $O(\log n)$ bridges can be recomputed on the fly.
2. Convex layer The i-th convex layer if a given set S of points is the convex hull of the (remaining) set of points after deleting the points in layers 1 to $i-1$. The first layer is the convex hull itself. Describe an $O(n p o l y l o g(n))$ algorithm to determine all the layers.
Hint: Can you apply the result of the previous problem?
3. Given two sets A and B such that $|A|+|B|=n$, prove an $\Omega(n \log n)$ bound to determine if $A \cap B=\Phi$. Hint: Consider an alternating sequence of points and argue that each order type corresponds to a component in the solution space.
4. Describe all the details of the linear time algorithm (especially the correctness) for triangulating a 1 -sided monotone polygon.
5. Describe all the details for subdividing a simple polygon into 1-sided monotone polygon in $O(n \log n)$ steps.
6. In Kirkpatrick's decomposition, the depth of the data structure (the levelled Directed acyclic subgraph) depends of the fraction of constant degree vertices that we an eliminate in each phase - we showed that this fraction α is at least $1 / 25$. Using more careful reasoning show that $\alpha \geq \frac{4}{70}$ by optimising the value of degree k to maximise the number of vertices eliminated.
7. Prove the following about a set of points (no three are collinear and no four points are cocircular).
(i) The circumcircle of a delaunay triangle doesn't contain any other input point.
(ii) A pair of points is an edge of Delaunay triangulation iff there is a circle passing through these points that is empty.
8. The Relative Neighbourhood Graph (RNG) of a set of points is one where there is an edge between points p_{i} and p_{j} iff the lune (i, j) does not contain any other points inside it. Lune($\left.i, j\right)$ is a region that is common to the two circles with radius $d(i, j)$ and centers p_{i} and p_{j}. Show that for any given set of points S

$$
\text { Euclidean } \operatorname{MST}(\mathrm{S}) \subseteq \mathrm{RNG}(\mathrm{~S}) \subseteq \mathrm{DT}(\mathrm{~S})
$$

