
Randomized Techniques in Computational Geometry

I Fundamentals

Sandeep Sen

I.I.T. Delhi, India

1

Outline

• Kind of Problems

• Kind of Algorithms

• Random Sampling in Geometry

• Incremental Construction

2

Primary Source (for this talk)

• Clarkson and Shor, “Applications of random sampling in

computational geometry”. DCG 89.

• Reif and Sen “Optimal parallel randomized algorithms for

3-D hulls and related problems. SIAMJC 92.

• Mulmuley and Sen, Dynamic point location in arrangements

of hyperplanes. DCG 92.

• Mulmuley “Computational Geometry : An introduction

through randomized algorithms” . Prentice Hall 94.

3

The problems addressed

• Range searching

• Ray shooting/Point location

• Planar partitioning

• Convex hulls

• Linear programming

• Nearest neighbour

4

The problems addressed cont’d

• Triangulation

• Hidden surface

• Levels of arrangements

• Diameter/ Width

• Euclidean minimum spanning tree

Exact computations

“Real” RAM

5

Randomization in Computational Geometry

• Improved Complexities

Range searching

• Simpler Algorithms

Convex hulls, triangulation, LP

• Dynamic Algorithms

with minimal modifications

• Parallel Algorithms

Faster, more efficient

6

Randomized Algorithms

• RNG O(log n) bits in constant time

• Assumes No input distribution

• Halts with a correct output

• Running time is bounded by some probability distribution

Prob.
distr.

Running time T

Expectation [T]

Tail estimates : Prob. [Tn > f(n)] ≤ ε]

7

Elementary Tools

Probabilistic Inequalities :

• Markov only expectation

• Chernoff moment generating function

• Chebychev intermediate(bounding random bits)

Linearity of Expectation E[X + Y] = E[X] + E[Y]

for any X, Y not necessarily independent

P (A ∪B) ≤ P (A) + P (B)

Notation :
∼

O (·)
def
= O(·) with prob. 1− 1

n

8

Quick Sort

Splitter

Sort
recursively

Sort
recursively

Ideal : T (n) = 2T (n/2) + O(n)

≤ O(n log n)

randomized : T (n) = T (n1) + T (n− n1 − 1) + O(n)

where n1 is a random variable in [1, n]

E[T (n)] : O(n log n)

9

Generalized : r splitters

n n n n4321

Splitters

Ideal : T (n) =
∑

T (n/r) + O(n log r)

≤ O(n log n)

E[T (n)] : O(n log n)

10

Kind of sampling

Choose a random subset R ⊂ N

• with replacement

• without replacement

• Bernoulli sample

(expected sample size is |R| by picking every element with

prob. (|R|
|N |)).

“parallel” sampling

Remark : Little difference in final results. We shall choose the

one that simplifies proof.

11

Some Notations

N : set of objects |N | = n

σ : (D(σ) L(σ)) (D, L)

configuration define conflict

Assumptions(for technical reasons)

• D is bounded by constant

• Valence (no. of σ with same D(σ) is bounded

12

13

14

15

.

.

.
.

.

.

.
.

.
.

..

.

.

.
.

.
.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.
.

..
.

16

.

.

.
.

.

.

.
.

.
.

..

.

.

.
.

.
.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.
.

..
.

17

.

.

.
.

.

.

.
.

.
.

..

..

.

.
.

.
.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.
.

..
.

18

.

.

.
.

.

.

.
.

.
.

..

..

.

.
.

.
.

.

.

.

.

.

.
.

.

.
.

.

.

.

.

.

.
.

.

19

Need for bounded degree

All lines tangential to a circle

Any subset of size r induces a face that intersects n− r lines.

20

Some Notations cont’d

• Π(N) : set of configurations (multiset) over N

• Πi(N) : set of configurations with conflict size =i

• Π0(R) : configurations active

For R ⊂ N , σ is feasible (for R) if D(σ) ⊂ R

We shall often use Π(N) to also denote |Π(N)|

21

22

A

B

23

A simple combinatorial bound

Claim Πa(N) = O(2a+d ·E[Π0(R)])

where R is a random sample of size n/2.

Π0(R) =
∑

σ∈Π(N) Iσ,R

where Iσ,R is 1 if σ is feasible.

E[Π0(R)] = E[
∑

σ∈Π(N) Iσ,R] =
∑

σ∈Π(N) E[Iσ,R]

=
∑

σ∈Π(N) Pr{σ ∈ Π0(R)}

≥
∑

σ∈Πa(N){σ ∈ Π0(R)}

= Πa(N) · 1
2a+d

24

Claim :

Pr{ max
σ∈Π0(R)

l(σ) ≥ c
n

r
log r} ≤

1

2

|R| = r by Bernoulli sampling

p(σ, r) : conditional probability that none of the k conflicting

element are selected given σ is feasible

≤ (1− r/n)k

≤ e−c log r for k ≥ cn/r ln r

BAD σ

= 1/rc

25

q(σ, r) : Prob. that D(σ) ⊂ R

Prob. that σ ∈ Π0(R) = p(σ, r)× q(σ, r)

Prob. that some σ ∈ Π0(R) is BAD (l(σ) ≥ c(n ln r)/r) :

≤
1

rc

∑

σ∈Π(N)

q(σ, r)

=
1

rc
E[Π(R)]

(usually Π(R) = rO(1))

≤ 1/2 for appropriate c

26

Sum of subproblem sizes

Def: c-order conflict





l(σ)

c



, for some c ≥ 0

Let Tc =
∑

σ∈Π0(R)





l(σ)

c





Remark For technical reasons it is not l(σ)
c
. T0 = |Π0(R)|. T1 =

sum of subproblems.

Claim E[Tc] = O(
(

n
r

)c
E[Πc(R)])

For constant c, E[Πc(R) = O(E[Π0(R)] implying that average conflict size is

very close to n

r

27

Pr{σ ∈ Πc(R)} = Pr{d(σ)defining elements chosen and c out of

l(σ) conflicting elements not chosen}

E[Tc] =
∑

σ∈Π(N)





l(σ)

c



 pd(σ) · (1− p)l(σ) for l(σ) ≥ c.

=
∑

σ∈Π(N)





l(σ)

c



 pd(σ)+c · (1− p)l(σ)−c ·
(

1−p
p

)c

≤
(

1−p
p

)c

·E[Πc(R)]

≤
(

1
p

)c

·E[Πc(R)]

where p = r
n
.

28

Improvements - Tail estimates ?

29

Improvements - Tail estimates ?

n
2

s log log n

Pr { no segments in S’ is selected } ≥

(

1

2

)log log n

= Ω(
1

log n
)

⇒ With Prob. Ω(1
log n

), # of intersections is Ω(n log log n)

30

Selecting a GOOD sample w.h.p.

Motivation: In divide-and-conquer algorithms, we are often

interested in bounding the maximum size of subproblems for which

we need tail estimates including the sum of subproblem sizes.

Since sample is GOOD in the expected sense, the probability that

the sum of subproblems is ≤ 2× E[sum of subproblems] is ≥ 1/2

from Markov’s inequality.

Implying

If we choose a set of log n independent samples - R1, R2 . . . Rlog n,

at least one is GOOD w.h.p.

How do we know which is good ?

31

Polling: an efficient resampling technique

1. Choose c log n samples

2. Poll (sample) S′ = n
log2 n

of the input

3. Estimate the goodness of the samples w.r.t. S ′. Choose an Ri

that is good w.r.t. S′ (break ties arbitrarily).

Polling Lemma With high probability we obtain a good sample

by the above procedure.

32

Consequences of Random Sampling

• Dynamization

• Existence of good splitters : The probabilistic method. There

exists efficient derandomization by method of connditional

probability and divide-and-conquer.

• Improved bounds for important combinatorial measures like

k − sets.

33

Randomized Incremental Construction (RIC)

Starting from an empty set

Repeat:

1. Insert the next object

2. Update the partial construction (data-structures)

Total Time =
∑

i Time to insert the i-th object.

Ts(N) = Total time to insert a sequence s. (s is good if total time

is less).

Expected total time = Expected time for a Random Insertion

sequence (worst case for any input of size n).

34

Quicksort as R.I.C.

Gradual refinement of partition

.

.

.

.

.
(-inf , +inf)

1
2
3
4
5
6
7
8
9
10
11

.

.

.

.

.

.

.

.

.

.

.

1
2
3
4
5
6
7
8
9
10
11

.

.

.

.

.

.

.

.

.

.

.

X X X X X X X X X X X1 2 3 4 5 6 7 8 9 10 11

35

Quicksort as R.I.C.

Conflict graph

..

.

.

.

.

.
(-inf , +inf)

1
2
3
4
5
6
7
8
9
10
11

.

.

.

.

.

.

.

.

.

.

.

1
2
3
4
5
6
7
8
9
10
11

.

.

.

.

.

.

.

.

.

.

.

X X X X X X X X X X X1 2 3 4 5 6 7 8 9 10 11

(-inf , 4)

(4 , +inf)

36

Quicksort as R.I.C.

Conflict graph

..

.

.

.

.

.
(-inf , +inf)

1
2
3
4
5
6
7
8
9
10
11

.

.

.

.

.

.

.

.

.

.

.

1
2
3
4
5
6
7
8
9
10
11

.

.

.

.

.

.

.

.

.

.

.

1
2
3
4
5
6
7
8
9
10
11

.

.

.

.

.

.

.

.

.

.

.

X X X X X X X X X X X1 2 3 4 5 6 7 8 9 10 11

(-inf , 1)

(1 , 4)

(4 , 8)

(8 , 10)

(10 , +inf)

37

A general bound for RIC

Total (amortised) cost = O(edges created in conflict graph)

Edges can be deleted at most once

General Step: R← R ∪ s (both random subsets)

Expected work (#edges created in the conflict graph)=
∑

σ∈Π0(R∪s)

l(σ) · Pr{σ ∈ Π0(R ∪ s)−Π0(R)}

From backward analysis this probability is the same as deleting a

random element from R ∪ s which is d(σ)
r+1 . Substituting

∑

σ∈Π0(R∪s)

l(σ) ·
d(σ)

r + 1
=

d(σ)

r + 1

∑

σ∈Π0(R∪s)

l(σ)

= O(
d(σ)

r
·
n

r
E[Π0(R ∪ s)])

38

Backward Analysis

For a fixed set of i + 1 object , what is the probability that the

i + 1-st insertion affects σ ?

Because of random insertion sequence, any one of the fixed set of i + 1 objects

is equally likely to be the last inserted object (by symmetry)

What is the probability that a random deletion from i+1 objects

defines σ ? (pretending to run backwards).

d(σ)

i + 1

Since conditional expected cost depends only on i (independent of

the actual set of objects)

Conditional expected cost = (Unconditional) expected cost

39

A common scenario E[Π0(R) = O(r).

Total expected cost of RIC =

r=n
∑

r=1

O

(

d

r
· n

)

= O(n log n) (applicable to convex hulls)

OPEN PROBLEM

Tail estimates

40

Linear programming (fixed Dim.)

X
d

Max.

Constraints

Non degenerate : Exactly d constraints define the optimum.

41

42

43

44

Analysis

Td(n) = Expected running time in d dimension for n constraints.

From backward analysis, probability that i-th insertion changes

optimum is d
i

(d constraints define optimum).

Td(i) = Td(i− 1) + Td−1(i− 1) ·
d

i
+ O(d)

By induction [Seidel]

Td(n) = O(d!n)

45

A generic search problem

Given a set S ⊂ U , build a data structure D, so that we can answer

a query quickly.

Issues

• query time

• space for D (space)

• Preprocessing time to construct D

Dynamic version

• Insert update D for S ∪ x, x ∈ U − S

• Delete update D for S − x

Ideal goal is to match the static performance and minimize update

times.

46

Arrangement Searching

Problem : Given N lines(planes,hyperplanes), build data

structure to do point location(report the face it lies in)

1

2

3

4
5

6

7
89

11
12

1314

16 17
18

19

10

47

Arrangement Searching cont’d

Dynamic version :

Allow insertion/deletion of lines

1

2

3

4
5

6

7
89

11
12

1314

15

16 17
18

19

20

21

10

48

Binary search

T (n) ≤ T (
n

2
) + O(1)

Approximate split :

T (n) ≤ T (αn) + O(1)

where α is a constant < 1(independent of n)

49

Binary search cont’d

Random split :

T (n) ≤ T (x) + O(1)

where x is random variable uniformly distributed in [1..n]

Pr[T (n) > c log n] <
1

n

Examples : • Randomized search trees

• Quick sort

50

Review of randomized search

Simple binary search

T (n) = T (
n

2
) + O(1)

Approximate Split

T (n) ≤ T (α · n) + O(1) , α < 1

Random Split

T (n) ≤ T (X) + O(1)

X is a r.v. ∈ [1 . . . n]

Pr[T (n) > c log n] <
1

n

Randomized Search Trees/Quicksort

51

R5

R6

R1
R2

R3

R4

R7

52

R5

R6

R1
R2

R3

R4

R7

53

Generalizing the randomized search tree

• Choose a good sample R of size C.

• Split the input using R and build the data structure recursively

for each subset.

R is good if each subproblem size is less than n/2

• C is large enough such that R is good with probability ≥ 1/2,

i.e. expected number of repetition ≤ 2.

• Height of data structure is O(log n), so search time is O(log n)

• Space Fragmentation makes it super-linear space. In this case

O
(

C2 n
C

log C
)

or

O(nC log C)

54

R5

R6

R1
R2

R3

R4

R7

55

R5

R6

R1
R2

R3

R4

R7

56

From triangles to triangles

R5

R6

R1
R2

R3

R4

R7

57

Reviewing skip list

58

Reviewing skip list cont’d

59

Reviewing skip list cont’d

60

A slightly different version

Choose an element to be in the sample with probbility 0.5

Li

Expectation[Li] = 2

PUGH Exp.[Total] = O(log n)

Improvement with careful analysis [Sen 91]:

Total < c log n with probability 1− 1
nc

61

Overall structure

S

S
Interaction

Random
Sampling

Oracle
Descendence

1

62

Overall structure

S

S
Search

Data
Structure

Interaction

Random
Sampling

Oracle
Descendence

S

1

2

63

Descendence oracle for skip-lists

For each level Li, maintain a linked-list of elements of Li−1 that an

interval [a, b], a, b ∈ Li intersects.

a b

i

L

L

i

i -1

64

Descendence oracle for arrangement searching

How many triangles of level i intersect a triangle of level i− 1 ?

O
(n

r

)

whp from Random sampling lemma

Descendence oracle can be a simple data structure storing the

intersections between triangles of successive levels and takes time

O(log n) w.h.p.

implying O(log2 n) time w.h.p for overall query.

65

Updates

66

Update

67

Zone lemma

Size of zone is O(n), i.e. only O(n) triangles must be updates at

each level.

68

Bounds

• Searching O(log n) w,h.p.

• Update O(n log n) w.h.p.

• Space O(n2)

Dimension d (fixed)

• Searching O(logd−1 n) w.h.p.

• Update O(nd−1 log n) w.h.p.

• Space O(nd)

[Mu-Sen]

69

