COV 886, Problem Sheet 2

1. Given a range space $S = (X, R)$ with VC dimension d
 (i) What is the VC dimension of (X, \bar{R}) where $\bar{R} = \{r \mid X - r \in R\}$, i.e., the complement space.

2. Consider the range space $S = (X, \mathcal{R})$ where X is the set of points in the Euclidean d-dimensional space \mathbb{E}^d and \mathcal{R} is the set of closed half-spaces in \mathbb{E}^d.
 (i) What is the VC dimension of S?
 Hint: You may want to make use of the following result called Radon’s theorem. For a given set of $d + 2$ points in \mathbb{E}^d, there exists a disjoint partition of these points, say C, D such that $CH(C) \cap CH(D) \neq \emptyset$ where $CH(\cdot)$ denotes the convex hull of a set of points.
 (ii) Is it easier to bound the shattering dimension of S? What bound does it yield on the VC dimension?

3. If R_1 and R_2 are ϵ-samples of P_1 and P_2 where P_1 and P_2 are disjoint, then $R_1 \cup R_2$ is an ϵ sample of $P_1 \cup P_2$.

4. For a range space with discrepancy bounded by $\log^c n$ (polylog) rederive the bound for ϵ sample.

5. Prove the following theorem using discrepancy. Let (X, R) be a range space with shattering dimension d, where $|X| = n$, and let $0 < \varepsilon < 1$ and $0 < p < 1$ be given parameters. Then one can construct a set $N \subset X$ of size $O(\frac{d}{\varepsilon^2p} \log \frac{d}{\varepsilon p})$ such that, for each range $r \in R$ of at least pn points, we have

$$|\frac{|r \cap N|}{|N|} - \frac{|r \cap X|}{|X|}| \leq \varepsilon \frac{|r \cap X|}{|X|}$$

Then N is called a relative (p, ε)-sample for (X, R).