Computational Geometry CSL 852

Lecture 30

Topic: Quadrees → EWS PD

Quadree: HT? | log | spread |
Canonical Quadtree

If gridpoints have some specific values, say powers of 2, then it is a canonical grid. We want to align our quadtree with such a family of grids.

\[G_i : \quad 0, \ 2^i, \ 2 \cdot 2^i, \ldots \]

\[G_1 \]

\[G_2 \]

\[G_i < G_j \quad j < i \]

\[G_i : \quad \frac{1}{2^i} \]

Advantage: At depth \(i \) from root, which subquadrants can be present? Can be hashed.
Point location, which is the smallest sub-square, i.e., largest j, for which G_j contains p.

Query: The set of quadrants.
Space: Unbounded.

Observation: Compress the nodes having only one child.

Observation: A compressed quadrant of n points has at most $O(n)$ nodes.
By hashing, we mean a performance $O(n)$ space $O(1)$ search time (e.g., Universal hash functions).

Speed up point location using "binary search" on the search path.

Claim: In a compressed quadtree, we can do point location in $O(\log n)$ time.
Constructing a Quadtree efficiently

Can we find a "canonical sub-square" that contains a large fraction of the n points, i.e., \(\alpha n \) for some constant \(0 < \alpha < 1 \)?

\[
T(n) = T(\alpha n) + T((1-\alpha)n) + O(n)
\]

Claim: Given a point set \(P \) of \(n \) points, we can compute a disk \(D \) that contains \(K \) points (\(K \leq n \)) such that \(\text{radius}(D) \leq 2 \text{Ropt}(K) \)
D can be found in $O(n \cdot \left(\frac{n}{k}\right)^2)$ steps.

If $k = \alpha n$, then $O(n)$.

Claim: Compressed quadtree can be constructed in $O(n \log n)$ time.