Lecture 19: Delaunay Triangulation

Delaunay disks: are defined as the interior of the circumcircle of a Delaunay Δ.

Delaunay disks, say \(D \cap S = \emptyset \) (without considering the points on the boundary)
The point set S does not have 4 co-circular points (general position).

A simple algorithm for Delaunay Δ-tim

We start with some arbitrary Δ-tim. An arbitrary Δ-tim will contain $2n - 2 - k$ Δs where k is the # points on the convex hull of S.
We examine a pair Δ' that share an edge

Does the $D(T_i)$ contain the point of T_2 (on the opposite side of the common edge)

T_4 and T_5 are legal (diagonal is legal)

and now check if there exists another pair of Δ' that are not legal

until all diagonals are legal

If C was on the circle

$\xi < \alpha < \xi'$

\Rightarrow the smallest angle of the Δ'
The smallest angle of the triangulation defined by the "legal" edge is larger than the smallest angle of the Δtrim defined by the "illegal edge".

When we continue flipping the diagonals, the max angle of the triangulation increases. Delaunay Δtrim maximises the max angle among all Δtrim.
The convergence takes \(O(n^2) \) edge flips.

(Using appropriate data structures, you can obtain \(O(n^2) \) runtime.)

If you are given an arbitrary \(\Delta \)-tin, how quickly can you verify that it is a Delaunay \(\Delta \)-tin?

\(O(n) \) as check if any point lies within the deck.

\(\Theta(n^2) \) procedure.
If we can verify for every edge that the two \(\Delta \)'s sharing the edge are legal, then it is a D.T.

Local Delaunay property

\[\Rightarrow \] Global property

Randomized incremental construction

Given the set of points \(S = \{ P_1, P_2, \ldots, P_n \} \),

first generate a random permutation of \(S \), say \(Q = \{ q_1, q_2, \ldots, q_n \} \)

Enclose the points in some large \(\Delta \) and then
→ Expected degree of g_i
 \[= O(1) \]

→ Main being the Δ in current DT.
Claim: The randomized incremental construction for Delaunay triangulation takes expected $O(n \log n)$ time for any arbitrary set of n points.