Point Location - continued

Algorithm for preprocessing a planar subdivision.

1. Find a "fractional independent" set. (An independent set of vertices that has size \(\geq \alpha n \) for some constant \(\alpha \)). Call it \(F \).

We had observed that there are at least \(\Omega n \) vertices in a planar graph that have degrees \(\leq 12 \), denoted by \(V' \). Select vertices from \(V' \) such that if we chose a vertex \(v \in V' \), we exclude all the neighbors of \(v \).

\[\text{N}(v) \leq 12 \]

Build \(F \) in this greedy fashion, it guaranteed that \(|F| \geq \frac{|V'|}{25} \).
2. Exclude (or delete F) from the graph $G = G_0(V_0, E_0)$ resulting in $G_1(V_1, E_1)$

$$V_1 = V_0 - F$$

Repeat step 1. Notice that G_1 is also planar and similar arguments apply

$$G_0 \rightarrow G_2 \rightarrow G_2 \rightarrow \cdots \rightarrow G_k$$

$$k \sim \log_2 |V| \sim O(\log_2 n)$$

G_k is a very small graph, say 10 vertices.

Initially we assume that G_0 is a Delta ted graph.

(Hand-drawn diagram of a graph with labeled vertices and edges.)
For point location, we can do it in \(O(1) \) time in \(G_k \) (using some brute force).

Having located in \(G_k \), we want to refine the point location w.r.t. \(G_{k-1} \).

What is the cost of refinement, i.e., locality in \(G_{k-1} \), given location in \(G_k \)?

Search levelled graph

Query line: \(\text{levels} \times O(1) = O(n) \)
Preprocessing Space and Time

Time at level i : $O(v_i)$

V_i : # vertices in level i.

Total preprocessing time : $O(i \leq V_i)$

$V_i \leq \alpha V_{i-1} = O(lv_i)$

Space is proportional to

$\leq \sum_{i} |F_i| \quad F_i$: set of fences in level i

$= O(lv_i)$

Kirkpatrick's

A By product decomposition is the hierarchy of the planar subdivision.
Triangulation

(input: line segments)

(constrained Delaunay)

(no Steiner points)

general

mountain chain