Merge hull

1. Partition the given set \(S \) of \(n \) points into two (almost equal) halves, say \(S_1 \) and \(S_2 \).

2. Recursively compute the convex hulls \(\text{CH}(S_1) \) and \(\text{CH}(S_2) \).

3. Combine or merge \(\text{CH}(S_1) \) and \(\text{CH}(S_2) \) into \(\text{CH}(S) \).

\[
T(n) = 2T\left(\frac{n}{2}\right) + O(n) + O(\log n)
\]

\[
\Rightarrow T(n) = O(n \log n)
\]
points of support?

H.W. Exercise

Use Graham Scan somehow to merge in $O(n)$ time.
Insertion Hull

Start with any 3 points that define a \(\triangle \)

Insert the next point until we have exhausted all \(n \) points

If the next point falls within the \(C^i \) (Convex hull of first \(i \) points)
then \[
\]
else construct \(C^{i+1} \) by finding the two tangents

To maintain an ordered sequence, we can use a Binary search tree (balanced).

\(\underline{1.} \) All operations can be done in \(O(\log n) \) time per point.

\(\underline{2.} \) Find the tangents