L₁ and L₂ are languages over some alphabet Σ.

L₁ is reducible to L₂ \(L₁ \leq L₂ \) if there exists a function \(f : Σ^* \rightarrow Σ^* \) s.t.

\[x \in L₁ \iff f(x) \in L₂ \]

If \(f(x) \) can be computed in polynomial time, then \(L₁ \) is polynomial-time reducible to \(L₂ \).

Claim: If \(L₁ \leq \text{polynomial} \) \(L₂ \) and there is a polynomial-time algorithm to recognize \(L₂ \) then \(L₁ \) can also be recognized in polynomial time.
The algorithm to recognize L,

1. Given any string x, we first compute $y = f(x)$ in polynomial time (polynomial in $|x|$: length of string).

 $|y|$ is polynomial bounded by $|x|$

 p_1

2. We use y as an input to the algorithm for L_2 and the running time is polynomial in $|y|$

 p_2

 If $y \notin L_2$ then return YES

 Else

 What is the running time

 $p_2 \left(p_1, (|x|) \right)$

 which is a polynomial function

 Claim: If $L_1 \leq_{poly} L_2$ and $L_2 \leq_{poly} L_3$

 \Rightarrow $L_1 \leq_{poly} L_3$
\(g(y) \) is the mapping for \(L_1 \) to \(L_2 \) to \(L_3 \)

\(g(f(x)) \)

\(P \): class of polynomial time recognizable languages

\(NP \): class of languages recognizable in non deterministic polynomial time

(It is not the same as languages not in polynomial time)

\(P \subseteq NP \)

\(P = NP \iff P \subseteq NP \)
Hamilton cycle problem

Given a graph $G = (V, E)$, is there a cycle that visits all vertices exactly once.

Check all possible permutations for a legal tour.

Independent Set Problem

Given a graph $G = (V, E)$ and int k.

Is there an independent set of size $\geq k$?

Try all possible subsets of size k and check independence.
Guessing a tour

Start with vertex 1

guess the next vertex

guess . . .

Then in a polynomial time, Verifier can test the property of Hamilton cycle.

Non-Hamilton

No independent set A size k
Knapsack

Decision version: Given n objects with weights \(w_1, w_2, \ldots, w_n \) and profits \(p_1, p_2, \ldots, p_n \) and knapsack of size \(B \), is there a subset to achieve profit \(K \)?

Knapsack \(\in \mathcal{NP} \)

Subset Sum Problem

Standard case: Given numbers
\[x_1, x_2, \ldots, x_n \]
Can we partition them into two subsets \(S_1 \) and \(S_2 \) such that:
\[\sum_{x \in S_1} x = \sum_{y \in S_2} y \]
\(S_1 \cap S_2 = \emptyset \)