Greedy may not work but may still be effective

Solving the items in decreasing order of the profit/weight ratio:

\[y_1, y_2, \ldots, y_{k-1}, y_k \]

\[
\max \left[\sum_{j=1}^{k-1} w(y_j), w(y_k) \right]
\]

Best possible fractional knapsack

Solution is

\[
\sum_{j=1}^{k-1} \left(w(y_j) + w(y_k) \right) + \left(w(y_k) \right)
\]

\[
\text{OPT of original problem} \leq \text{OPT'} \ (\text{fractional knapsack}) \leq A + B
\]

\[
\Rightarrow \quad \text{OPT} \leq 2 \max \{A, B\}
\]

\[
\Rightarrow \quad \frac{\text{OPT}}{2} \leq \max \{A, B\}
\]

Guarantee:

\[
\frac{\text{Our solution}}{\text{Best solution}}
\]
H.W. : Without the term B, construct a counterexample so that only the term A may not be even 10% of OPT

Matching Problem

\[Z \]

Greedy can give 50% guarantee

Approximation Algorithm is an important field

Implementation of Kruskal's algorithm

How do you test for cycles?

Observation: If an edge goes across two trees, then we can add it else it creates a cycle
Find: Given a vertex which tree contains this vertex?

- If the endpoints (u, v) belong to different trees, then we must join T_1, T_2.

Union Find data structure

Given subsets $S_1, S_2, ..., S_k$, we want to maintain a data structure that supports the following operations:

- $\text{Find}(x)$: return a set S_i such $x \in S_i$.
- $\text{Union}(S'_1, S'_2)$: returns $S'_1 \leftarrow S'_2 \cup S'_3$ (and implicitly destroys S_2, S_3).
We want to design a data structure that is efficient for a sequence of union and find operations.

For Kruskal’s algorithm, 2m finds and n-1 unions.

We will focus on disjoint union find possibilities.

1. Each set is a linked list of members.
 - Find could be \(O(n) \)
 - Union \(O(1) \)

2. For every element, we can keep the set identification.

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>(x_3)</th>
<th>(\ldots)</th>
<th>(x_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>5</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
</tbody>
</table>

Find is \(O(1) \) - array look up.

Union: \(O(n) \) - change the labels of the elements involved.

When we do union, let us change the labels of the elements in the smaller set.
The cost of a sequence of at most \(n-1 \) union operations can be changed to the number of label changes over all elements. Let \(\eta(x) \) be the no. of label changes incurred by \(x \) over the entire sequence of \(n-1 \) unions.

Then \(\text{cost of } n-1 \text{ unions} \leq \sum_{x} \eta(x) \)

Claim \(\eta(x) \leq \log n \)

For every label change \(x \) is in a set which is at least twice the size of the previous set.

So total cost of \(n-1 \) unions \(\leq n \cdot \log n \)

Total cost of \(m \) finds and \(n-1 \) unions is bounded by \(O(m + n \log n) \)