Dictionary: search, insert, delete

Balanced BST an efficient dictionary: \(O(\log n) \) for each operation

Set of elements \(S \), Dictionary \((S) \)

\[|S| = n \quad S \text{ a totally ordered} \]

Question: Can we do better?

Define a universal set \(U \) of keys

\[U = \{0, 1, 2, \ldots, n-1\} \]

Hash function \(h: U \rightarrow T: \{0, 1, \ldots, m-1\} \)

\[|U| \gg |T| \]

Any instance of building a dictionary is

Given a subset \(S \subseteq U \),

\[h: S \rightarrow T \quad |S| \leq |T| \]

\[|S| = n \quad \text{otherwise collision} \]
For any \(x, y \in U \), \(x \neq y \) calls if:
\[
h(x) = h(y)
\]

A hash function is "good" if there are no collisions within \(S \).

A good hashing scheme should work for all subsets \(S \):
\[
h(x) = x \mod m
\]

What happens for a random subset \(S \):

- Each of the \(n \) elements of \(S \) is chosen uniformly at random from \(U \).
- (Strictly speaking, \(\binom{N}{n} \) of them is chosen at random.)
What is performance of the hash function mod m?

What is the expected # of elements that will fall into location 0?

Recall that when elements collide in the hash table, build a linked list.

By using the linked list, the performance of hashing is proportional to the length of the list.

Let \(Z_i \) be a r.v.:
\[
Z_i = \begin{cases}
1 & \text{if } x_i \in T(0) \\
0 & \text{otherwise}
\end{cases}
\]

\[
\text{Prob } [Z_i = 1] = \frac{1}{m}
\]

elements in \(T(0) \) = \(Z_1 + Z_2 + \cdots + Z_n = Z \)

\[
E[Z] = E\left[\sum_i Z_i \right] \leq \sum_i E[Z_i] = n \cdot \frac{1}{m}
\]
\[
E[Z_i] = \frac{1}{m} \quad (\text{Read Ch 2, note 0.1})
\]

If \(n = m \), \(E[Z] = 1 \)

\[
\Rightarrow \quad \text{Prob} \left(Z \geq 2 \right) \leq \frac{1}{2} \quad \text{from Markov}
\]

We would like to analyze the performance over a sequence of operations

\[
O_1, O_2, O_3, \ldots, O_t \quad O_i \in \{ \text{search, insert, delete} \}
\]

\[
E[O_i] = \frac{n}{m}
\]

\[
E[O_1 + O_2 + O_3 + \ldots + O_t] = \sum E[O_i] = t \cdot \frac{n}{m}
\]

What if \(S \) is worst-case arbitrary?

Assume that we have a family of hash functions \(H \)

Basic Hope: Given an arbitrary \(S \) there is at least one good \(h \in H \) for \(S \)
Idea: Pick a random $h \in H$

A family of hash functions H is called \textit{universal} if
\[
\forall x, y \in U \quad \sum_{h \in H} \delta_h(x, y) \leq c \frac{|H|}{m}
\]
where c is some constant
\[
\delta_h(x, y) = \begin{cases} 1 & \text{if } h(x) = h(y) \\ 0 & \text{otherwise} \end{cases}
\]
collision function for h

Therefore, if we pick a hash function at random, the probability that any given pair x, y will collide is $\frac{c}{m}$

What is the expected number of collisions in location 0 of the table for a random hash function?

(For any arbitrary S)

Consider a generic element $x \in S$
\[
\frac{1}{|H|} \sum_{y \in H \atop y \neq x} \sum_{h \in H} \delta_h(z, y) = \text{expected collision for a fixed element } x \in S
\]

\[
\sum_{y \in S} \frac{1}{|H|} \sum_{h \in H} \delta_h(x, y)
\]

\[
\sum_{y \in S} \frac{1}{m} \leq \frac{C \cdot n}{m}
\]

Existence of Universal family?