How about maximal points in three dimensions?

Brute force in d dimensions will work correctly using \(O(d \cdot n^2) \).

Sweeping by a plane \(\Pi \) to \(Y-Z \) in decreasing \(x \) coordinates.

Obs.: Point having maximal \(x \)-coord is maximal, say \(\phi \).

When we visit the next point, say \(q \), we know \(x(q) < x(\phi) \).

\(y(q) : y(\phi) \quad z(q) : z(\phi) \)
In the generic step, the latest point visited, say \(r \), will not be maximal if and only if one of the points visited previously has a higher \(y \) coordinate and a higher \(z \) coordinate.

We want to test if \(r \) is inside or outside the staircase formed by the previously visited points.
1. Can we do it quickly even if staircase is large?
2. Can we update the staircase quickly?

Problem: Design an efficient data structure for the staircase so that 1 and 2 can be supported.
Given a balanced BST, can we support insertions, search and "arbitrary # of deletions" in $O(\log n)$ time?

In general, the following data structure operation on sorted sets are considered very useful:

1. Splitting out an interval of points
2. Concatenating two sorted intervals into a single interval

Concatenatable queues
In the staircase, we will delete the points one by one paying $O(\log n)$ cost per deletion.

One single iteration may be expensive (let a point be deleted) but overall each point can be inserted or deleted at most once.

$$\Rightarrow O(n \log n)$$ overall for 3D max.

Amortized Analysis