Given a set J_a, J_b, J_c, J_d and some precedence constraints:

(i) $J_a < J_b$: Job a must be done prior to Job b

(ii) $J_a < J_d$

(iii) $J_d < J_c$

(iv) $J_c < J_b$

Can all jobs be scheduled?

\checkmark

Can all jobs be scheduled?

\checkmark

(i) $J_a < J_b$ (ii) $J_b < J_d$ (iii) $J_c < J_b$

(iv) $J_d < J_a$

Not feasible since $(J_a < J_b < J_d)$

there is cyclic precedence
Observation: There is no feasible schedule if there is a cyclic precedence between some subset of jobs.

If there is no cyclic precedence can we schedule?

Let us model it using a graph V: set of jobs, E: (x, y) s.t. $x < y$

Do a DFS, always reveals if there is a cycle.

If there is no cycle in a directed graph \Rightarrow Directed Acyclic Graph (DAG)
Observation: (i) There has to be a (source vertex) vertex with indegree 0
(ii) There must be a vertex with outdegree 0 (sink vertex)

A feasible schedule can be constructed by finding a source, deleting it, and repeating this in the remaining graph: $O(|V|^2)$

The precedence constraints define a "partial ordering" Schedule as a total ordering consistent with the partial ordering

Topological sort: Is an ordering of the vertices $V_1, V_2, V_3, \ldots, V_n$ such that for any edge $V_i \rightarrow V_j$, $j > i$
By keeping track of indegrees of vertices, can we get a faster algorithm? Which kind of data structure will yield a $O(V + E)$

Start line

Finish line

Decreasing finish line may work!
Observation: Consider a path in the DAG with vertices \(v_i (s_i, f_i) \) and \(v_j (s_j, f_j) \). Then, if \(v_i \rightarrow v_j \), then:

\[f_i > f_j \]

Case 1. If \(s_i < s_j \), then it will visit \(v_j \) during the DFS. \(v_i \) and back up for \(v_j \) before \(v_i \):

\[f_i > f_j \]

Case 2. If \(s_j < s_i \), then \(v_j \) precedes \(v_i \) in the DFS. Therefore:

\[s_j < f_j < s_i < f_i \]
For any directed graph,

\[v_i \rightarrow v_j \rightarrow v_i \quad \text{and} \quad v_i \rightarrow v_j \]

\[v_i \rightarrow v_j \rightarrow v_i \]

\[v_i \rightarrow v_j \]