Bellman Ford algorithm for SSSP

\(d(u,v) \) is the shortest path distance between vertices \(u \) and \(v \)

\(u \rightarrow v \) is the notation for a path from \(u \) to \(v \)

\(d(s,v) \) is the final output of the algorithm for all \(v \)

\(D(v) \) is an upper bound on \(d(s,v) \)

Initially \(D(v) = \infty \), \(D(s) = 0 \)

Finally \(D(v) = d(s,v) \)

Relax \((u,v) \quad (u,v) \in E \)

If \(D(v) > D(u) + w(u,v) \), then \(D(v) \leftarrow D(u) + w(u,v) \)

Repeat \((V-1) \) times

- for all edges \((u,v) \in E \)
 - Relax \((u,v) \)

Output the final \(D(v) \) for all \(v \in V \)
Claim: At the end of \(i \) (VI-1 iterations)

\[D(v) = \delta(s,v) \]

Note: Running time for BF is \(O(|V| \cdot |E|) \)

For every iteration, cost \(\delta \) relaxation for all edges.

Proof by induction on the set of edges in the shortest path from \(s \) to \(v \)

For \(\ell = 0 \)

\[D(s) = 0 = \delta(s,s) \]

So correctly initialized.

Suppose it is correct for \(\ell < i \) iterations, i.e., all vertices whose shortest path from \(s \) consists of \(\ell < i \) edge have \(\delta(s,x) = D(x) \) after \(i-1 \) iterations.

During the \(i \)th iteration, all edges will undergo relax operation.
Consider a vertex y s.t. the shortest path has i edges.

\[D(y') = S(x, y') \]

So when we relax edge (y', y)

\[S(x, y) \leq D(y) = D(y') + w(y', y) = S(x, y') + w(y', y) = S(x, y) \]

\[\Rightarrow \text{All vertices have their correct distances} \]

Remark: If there is a -ve cycle in the graph, then BF algorithm can detect it if we let it run for $|V| + |E|$ iterations.

If there is any change in the D values of a vertex then there must be a negative cycle (shortest cycle must have length $\leq n$).
For non-negative weights, we can do better by using Dijkstra

In Dijkstra’s algorithm, the relax operation are carefully scheduled
so that all edges is relaxed at most once.

Partition

\[V \]

\[S \]\n
the set of vertices \n\n\[u : D(u) = \delta(s, u) \]

\[D(v) \geq \delta(s, v) \]

the correct distances are yet to be determined

Initially \[S = \{ s \} \]

\[D(s) = \delta(s, s) = 0 \]

Repeat until \[U = \emptyset \]

* Iterations \[v-1 \]

\[[1. \text{ Choose the vertex with smallest label in } U, \text{ say } x, \text{ and give } O(\log v) \text{ properly que}]

\[2. \text{ Relax all outgoing edges for } x \]

\[\text{Move } x \text{ from } U \text{ to } S \text{ outdegree } (x) \]
Total time: \[\leq \sum_{v} \log |V| + \text{outdegree}(v) \leq O(|V| \log V + |E|) \]

Why does Dijkstra's algorithm output the correct distances?

\textbf{Claim:} The algorithm discovers the shortest path distances in order of their actual distance from \(s \).

\[d(s, v) = 2 \]

\[d(s, v_2) = 10 \]

\(v \), will move into \(S \) before \(v_2 \) in Dijkstra (and the reverse for B.F.)

When a vertex \(x \) has the smallest \(D(x) \) in \(U \) then \(D(z) = d(s, x) \)

\textbf{Proof by contradiction:} Suppose not, i.e.

\[D(x) > d(s, x) \]
Consider the shortest path from \(s \rightarrow x \)

let \(x' \) be the most recent predecessor of \(x \) in the path. Let \(D(x') = \delta(s, x') \), and \(x' \in S \)

Then \((x', x'')\) must have been relaxed when \(x' \) moved to \(S \)

\[
D(x'') < D(x)
\]

because of non-negative weights

So \(x'' \) should have been picked