Tries to represent strings (digital trees) \(\Sigma \): fixed alphabet

cave, bat, at

A tree to store the set of strings and each node has arity \(|\Sigma| \)

Shing matching,
Common substrings
Longest common prefix

How efficiently can you construct Tries

In particular \(O(|\Sigma| \leq k_i) = O(N) \)

For \(|\Sigma| \leq N \), we could sort in optimal time.

How about space? \(|\Sigma| N \)
Knapsack problem

Given a knapsack of capacity B and n items with profits p_i, $i \leq n$ and weights w_i, $i \leq n$ we want to fill up the knapsack so that we maximize profit of the items filled. Let

\[x_i = \begin{cases}
1 & \text{if item } i \text{ is included} \\
0 & \text{otherwise}
\end{cases} \]

Maximize \[\sum x_i p_i \]

s.t. \[\sum x_i w_i \leq B \]
\[x_i \in \{0, 1\} \]

E.g. \[B = 15 \quad n = 4 \]
\[p_i = 10 \quad 10 \quad 12 \quad 18 \]
\[w_i = 2 \quad 4 \quad 6 \quad 9 \]
\[R_i = 5 \quad 2.5 \quad 2 \quad 2 \]
Greedy approach

(Residual capacity, item to be considered, current profit)

\[(15, i_1, i_2, i_3, 0) \rightarrow (6, i_1, i_2, 33, 18)\]

\[\rightarrow (0, i_1, 2, 30)\]

Straightforward greedy doesn't get us the best solution for some instances

Even very greedy with ratio will not necessarily work

If we are willing to reconsider past decisions?
- With backtracking, we can obtain the exact solution; however, we may visit all leaf nodes \(\Rightarrow \) brute force \(2^n \) algo.

- Can we prune the search?

 can we avoid visiting all nodes and still be convinced about the final result?

Can we "estimate" the profit possible by visiting a subtree?

In particular, an upper bound \(U(v) \).

At any node \(v \) of the search tree, we have a lower bound \(L(v) \) and an upper bound \(U(v) \).

- The best that we can do by visiting \(v \) is no worse than exploring its subtree in \(v \).

\[L(v) > U(v) \]
Even if we were to use greedy strategy, there is no provable guarantee that we will not visit all the 2^n nodes.

A * algorithm

Greedy works for Minimal Spanning Trees