Consider a sequence of operations O_1, O_2, \ldots, O_m on a given data structure D where we are interested to bound the total cost T of the m operations. This can be done by bounding the worst case cost of any operation, say times m.

But it is possible that we do not encounter the cost times very frequently, i.e., we may be able to get a superior bound.

Example 1: Suppose D is a stack and $O_i \in \{\text{push, pop, empty stack}\}$.

Cost of push, pop in $O(1)$ and cost of empty stack = # elements on stack.
Worst case cost \(\text{Empty Stack} \in O(m) \)

\[
= \text{Total cost for a sequence of } m \text{ operations in } O(m \cdot m) = O(m^2)
\]

Note: For special cases like the stack not growing beyond say constant size, total cost \(\leq O(c \cdot m) = O(m) \)

Observation: The worst case bound \(O(m) \) cannot happen very often.

In particular, if we encounter a cost \(K \) for empty stack \(\Rightarrow \) there were at least \(K \) push operations after the previous empty stack call.

Push, Pop, push for \(E \) at push point \(3.5 \)

\[
\geq K \text{ push operations}
\]

\(i.e. \) the average cost: \(O(k) \times O(1) + O(k) \), \(~ O(1) \)

\(\frac{1}{K} \)
\# pops \leq \# push ops

Every stack can be written as a sequence of pop ops:

```
Push pop push . . ES
```

Averaging arguments is known as amortized analysis.

A general technique for amortized analysis:

We define a potential function \(\phi : D \to \mathbb{R} \)

The amortized cost of a single operation:

\[\text{actual cost} + \Delta \phi \; \text{change in potential} \]

\(\phi \) is potential after

\(\phi \) is potential before

\(\phi_1 \) is initial potential \(\phi_0 \)

\[\text{Total amortized cost} = w_1 + (\phi_1 - \phi_0) + w_2 + (\phi_2 - \phi_1) + \ldots + w_m + \phi_f - \phi_i \]

\[= \sum w_i + \phi_f - \phi_0 \]
Total amortized cost: Total actual cost + $\phi_f - \phi_o$.

In particular, if $\phi_f - \phi_o > 0$

\Rightarrow Amortized cost > Actual cost

Example: Stacks

$\phi(\text{stack}) = \# \text{ elements in stack}$

Amortized cost of push: $1 + 1 = 2$

Amortized cost of pop: $1 + (-1) = 0$

Amortized cost of empty stack = 0

Total amortized cost of m ops on stack

= Worst-case amortized cost of a single op $\times m$

= $2 \times m = O(m)$

Note: $\phi_f - \phi_o \geq 0$ ($\phi_o = 0$ $\phi_f - \phi_o > 0$)

Suppose we did not begin with an empty stack
Ex 2: Counters: A counter starting from 0 that can count till 2^n can be represented by n bit.

3 bit counter:

- The cost of incrementing a counter: # bit flips

Total cost for the counter to go from 0 to $2^n \leq n \cdot 2^n$

Observation: The ith bit flips $\frac{2^n}{2^i}$ times, $0 \leq i \leq n-1$

Total # bit flipped: $\sum_{i=0}^{n-1} \frac{2^n}{2^i} \leq [2] \cdot 2^n$
\(\Phi \) (counter) = \# bits with value 1

Amortized cost of incrementing the counter

\(= \# \) bits flipped + \(\left(\# 1s \mod \text{ cand}(i+1) \right) - \# 1s \mod \text{ cand } i \)

when going from \(i \rightarrow i+1 \)

\[\begin{array}{cccccccc}
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 1
\end{array} \]

For a block of \(k \) 1's actual cost: \(k+1 \)

change in potential: \[\frac{-(k-1)}{2} \]

Amortized cost of increment: \(2 \)

Alternative for BST (without deletion)

Operation: search, insert

Semidynamic dictionary
Arrays:

Given n elements, we store them in a set of arrays that can accommodate 2^i elements and we have no more than one for each i.

$n = 6
ightarrow A_2 : 2^2 \{0, 3, 7, 9\} \\
\quad \rightarrow A_1 : 2^1 \{1, 8\} \\
\quad A_0 : 0$

Within each array, we keep the elements sorted, but there is no relation between the elements of two distinct arrays.

Search?

Insert?

- Logarithmic search once for each of the log arrays

- $= O(\log^2 n)$