Time and Space Complexity:

Upper bounds:

\[O(f(n)) \]

Lower bounds:

\[\Omega(g(n)) \]

No algorithm can be better:

\[f(n) \geq g(n) \]

\(f(n) \) and \(g(n) \) are "asymptotically in the same class"

Primitive Instructions

Set of instructions: \{ Read, Write, Arithmetic, Comparison, Logical \}

Tightness of the analysis using a concrete input should not be confused with lower bound
\[a = 2 \]
\[
\text{for } i := 1 \text{ to } n \text{ do }
\]
\[a \leftarrow a \times a \]
\[
\text{end}
\]
\[
\text{print } a
\]

2

\[2^n \]

What is the value printed?

Notion of induction

Claim After \(i \) iterations, \(i \geq 0 \), value \(a = 2 \)

Base case: \(i = 0 \quad a = 2^0 = 2^1 = 2 \)

Inductive step: If assertion \(P(i) \) is true after \(i \) steps then it is true after \(i+1 \) steps \(P(i) \Rightarrow P(i+1) \) for all \(i \geq 0 \)

Size of operands is crucial for analysis: Operands must fit into a few "words".

For inputs of size \(n \), the operands should be \(O(\log n) \) bits.
Given a set S of n pairs of the form (x_i, y_i), $i=1 \ldots n$.

A pair (x_i, y_i) "dominates" (x_j, y_j) if $x_i \geq x_j$ and $y_i \geq y_j$.

A maximal subset of S is one whose pairs that are not dominated.

Problem: Find all maximal pairs.