1. Solve the following recurrence equations given \(T(1) = O(1) \)

(a) \(T(n) = T(n/2) + bn \log n \)

(b) \(T(n) = aT(n - 1) + bn^c \)

2. Show that the solution to the recurrence

\[
X(n) = \sum_{i=1}^{n} X(i)X(n - i) \text{ for } n > 1
\]

is \(X(n + 1) = \frac{1}{n+1} \binom{2n}{n} \)

3. Instead of the conventional two-way mergesort, show how to implement a \(k \)-way \((k \geq 2)\) mergesort using appropriate data structure in \(O(n \log n) \) comparisons. Note that \(k \) is not necessarily fixed (but can be a function of \(n \)).

4. (Multiset sorting) Given \(n \) elements among which there are only \(h \) distinct values show that you can sort in \(O(n \log h) \) comparisons.

Further show that if there are \(n_\alpha \) elements with value \(\alpha \), where \(\sum_{\alpha} n_\alpha = n \), then we can sort in time

\[
O(\sum_{\alpha} n_\alpha \cdot \log \left(\frac{n}{n_\alpha} + 1 \right))
\]

5. Modify the integer multiplication algorithm to divide each integer into 4 parts and count the number of multiplications and additions required for the recursive approach. Write the recurrence and solve it and compare it with the divide-by-2 approach.

6. In the selection algorithm, if we choose a random element as a splitter, then show that the expected running time is \(O(n) \). Prove the correctness and analyse the algorithm rigorously.

Hint: Write a recurrence and solve for it which is similar to the expected time analysis of quicksort.

7. Given a set \(S \) of \(n \) numbers, \(x_1, x_2, \ldots, x_n \), and an integer \(k, 1 \leq k \leq n \), design an algorithm to find \(y_1, y_2 \ldots y_{k-1} \) \((y_i \in S \text{ and } y_i \leq y_{i+1})\) such that they induce partitions of \(S \) of roughly equal size. Namely, let \(S_i = \{ x_j | y_i \leq x_j \leq y_{i+1} \} \) be the \(i-th \) partition and assume \(y_0 = -\infty \) and \(y_k = \infty \). The number of elements in \(S_i \) is \([n/k]\) or \([n/k]+1\).

Note: If \(k = 2 \) then it suffices to find the median.

8. An element is common, if it occurs more than \(n/4 \) times in in a given set of \(n \) elements. Design an \(O(n) \) algorithm to find a common element if one exists.

9. Construct an example to show that MSB first radix sort can be asymptotically worse than LSB first radix sort.

10. Given two polynomials \(P_A(n) = a_{n-1}x^{n-1} + a_{n-2}x^{n-2} + \ldots + a_0 \) and \(P_B(n) = b_{n-1}x^{n-1} + b_{n-2}x^{n-2} + \ldots + b_0 \), design a subquadratic \((o(n^2))\) time algorithm to multiply the two polynomials. You can assume that the coefficients \(a_i \) and \(b_i \) are \(O(\log n) \) bits and can be multiplied in \(O(1) \) steps.

Note: Don’t use Fast Fourier Transform based methods since it has not been discussed in class.

11. Prove that subgraph returned by Dijkstra’s algorithm (or Bellman Ford) is a directed tree rooted at source with \(n - 1 \) edges.
12. Given a directed acyclic graph, design a linear time algorithm for computing a SSSP in $O(|V| + |E|)$ time.

13. Let A be an $n \times n$ adjacency matrix of a directed graph $G = (V, E)$ with $A_{i,i} = 0$. We define a operation $B = A \oplus A$ as follows

$$B_{i,j} = \min_{1 \leq k \leq n} \{a_{i,k} + a_{k,j}\}$$

Note the similarity with normal matrix multiplication where we use \times and $+$ instead of $+$ and \min. (i) Prove that $B_{i,j}$ equals the shortest path of at most 2 edges between vertex i and vertex j.

(ii) Prove that $B = A \oplus A \oplus \ldots \ell$ times A stores the shortest path with at most ℓ edges between i and j in $B_{i,j}$

(iii) Design a fast algorithm to compute A^ℓ under the operation \oplus

14. Given a graph G with negative weights (no negative cycles), we want to transform it to another equivalent graph G' that preserves the shortest paths of G but doesn’t contain any negative weights.

(i) If we add to all edges a weight greater than the largest negative weight, will shortest paths be preserved ?

(ii) Let $d(v)$ be equal to the shortest path distance to v from source vertex s. Suppose we add to every edge (u, v), the weight $d(u) - d(v)$, i.e. the new weight $w'(u, v) = w(u, v) + d(u) - d(v)$. Then show that

(a) $w'(u, v) \geq 0$

(b) Between all pairs of vertices x, y, for two distinct paths P_1 and P_2, $w(P_1) \geq w(P_2)$ iff $w'(P_1) \geq w'(P_2)$.