1. Design a DFA for the language \(L = \{ w \in 0^* \mid |w| \text{ is a multiple of } 2 \text{ or } 3 \} \). Briefly explain the construction. (5)

One clean and intuitive construction will be to take product construction of the \(M_1 \) and \(M_2 \) that recognize multiple of 2 and 3 respectively and mark out the final states as either final state of \(M_1 \) or \(M_2 \).

2. Let \(L_1, L_2 \subset \Sigma^* \) be infinite languages. (5+5)

 (a) If \(L_1 \cap L_2 \) is regular then \(L_1 \) and \(L_2 \) are regular. Justify or give a counterexample.
 False. Consider \(L_1 = 0^11^1 \) (some non regular language) and \(L_2 = \Sigma^* \). Then \(L_1 \cup L_2 = \Sigma^* \Rightarrow L_1 \cap L_2 = \Sigma^* = \phi \). Note that \(L_1 \) is not regular and \(\phi \) is regular.

 (b) For \(L_1 \subset L_2 \), can \(L_2 \) be non-regular and \(L_1 \) regular ? Provide an example or argue about impossibility.
 Let \(L_2 = 0^p \) where \(p \) is prime and \(p \neq 2 \cup L_1 = (00)^* \). Note that \(L_2 \) is not regular, otherwise \(L_2 - L_1 \) is regular.
3. Consider the language \(L = \{0^i \cdot 1^j | i \neq j\} \) for \(\Sigma = \{0, 1\} \). Consider the following arguments to show that \(L \) is not regular. Point out the fallacy in the proofs (if any) in one sentence.

(a) Since \(\{0^i \cdot 1^j | i = j\} \) is not regular (proved in class), it follows from the the closure property of complement of Regular languages that \(L \) is not regular. \(\boxed{2} \)

\(\{0^i \cdot 1^j | i \neq j\} \) is not the complement of \(\{0^i \cdot 1^j | i = j\} \) for the alphabet \(\{0, 1\} \). In particular it doesn’t contain strings not of the form \(0^*1^* \).

(b) Consider the language \(L_< = \{0^i \cdot 1^j | i < j\} \). It can be proved easily by Pumping Lemma that \(L_< \) is not regular by choosing a string \(0^n \cdot 1^{n+1} \) where \(n \) is the constant of the Pumping Lemma and pumping enough 0’s so that it exceeds the number of 1’s. Similarly, the language \(L_> \{0^i \cdot 1^j | i > j\} \) is not regular. Since \(L = L_< \cup L_> \), it follows that \(L \) is not regular. \(\boxed{2} \)

Even if \(L_1, L_2 \) are not regular, their union can be regular - for example a non regular language and its complement.

(c) Using Pumping Lemma Consider a string \(z = 0^n \cdot 1^{n+k} \) where \(n \) is the constant of the Pumping Lemma and \(k \) is an integer \(1 \leq k \leq n \). In the partition \(z = u \cdot v \cdot w \), note that \(uv \) consists only of 0’s, so choose \(v = 0^k \). Then \(uv^2w = 0^{n+k} \cdot 1^{n+k} \notin L \) and therefore a contradiction. \(\boxed{2} \)

We can’t choose \(v \) in a pumping lemma proof and must argue wrt all possible \(v \)s.

(d) In case, you find all the proofs are incorrect, then either show that \(L \) is regular or give a correct proof that \(L \) is not regular. (Otherwise you just mention one of the previous proof that is correct). \(\boxed{6} \)

Since \(0^*1^* \) is regular, its complement is also regular - denote it by \(S \). Suppose \(L = \{0^i \cdot 1^j | i \neq j\} \) is regular, then \(S' = S \cup L \) is also regular using the closure properties of regular languages. Since \(\Sigma^* = S' \cup \{0^i \cdot 1^i\} \), it implies that \(\{0^i \cdot 1^i\} = \Sigma^* - S' \) is regular which is a contradiction.
4. Let L be a regular language over $\{0, 1\}$ and consider the set of strings $S = \{y | y \cdot (01^*01 + 010^*) \in L\}$.

(i) What can you say about S - is it always regular? Justify or give a counterexample. (10)

Consider a DFA M such that $L(M) = L$. Let R denote the set of strings $(01^*01 + 010^*)$ For any state $q \in Q$, if there is a string $y \in R$ such that $\delta(q, y) \in F$, then mark that state q as a final state - denote this DFA by M'. So M' is identical to M except perhaps the set of final states F'.

Proof of correctness If a string y is accepted by this machine then from our definition of final states F' there must be a string $x \in R$ such that $\delta(q_0, y \cdot x) \in F$, i.e., $y \cdot x \in L$.

Conversely, if for any string y, there exists $x \in R$ such that $\delta(q_0, y \cdot x) \in F$ (i.e. it belongs to L) then $\delta(q_0, y) \in F'$ and is accepted by M'.

(ii) What can you say about $S' = \{y | y \cdot 0^i \cdot 1^i \in L, i \geq 1\}$ (3)

In the previous part, we didn’t use any property of L being regular, so it carries over this case also.

However, in part 1, we can procedurally determine if there is a path between q and F with one of the strings in L. Consider a state $p \in Q$ - we can find an r.e. for all the paths from q to F, say R'. Then, if $R \cap R' \neq \phi$, then $q \in F'$.

For the second problem, R is not an r.e. and we may not know how to find $R \cap R'$, nevertheless, the definition of F' is still valid and the machine is a DFA by construction. This can be thought of as a non-constructive proof.