The languages accepted by Finite Automaton (DFA or NFA) are called "regular languages".

\[(010)^i \quad i \geq 0 \]

\[\varepsilon, 010, 010010, (010)^i \]

\[(01)^i \cup (010)^j \quad i, j \geq 1 \]
The class of regular expressions (r.e.)

Basics cases:

1. \(\emptyset \) : empty set
2. \(\varepsilon \) : \(\{ \varepsilon \} \)
3. \(a \in \varepsilon \) : \(\{ a \} \)

If \(r_1 \) and \(r_2 \) are r.e., then

1. \(r_1 + r_2 \) is also a r.e. representing \(r_1 \cup r_2 \)

2. \(r_1 \cdot r_2 \) represents the set of strings \(r_1 \cdot r_2 \)

\[R_1 \cdot R_2 = \{ w_1 \cdot w_2 \mid w_1 \in R_1, w_2 \in R_2 \} \]

3. \((r_1)^* \) represents \(R_1 \)

 and \((r_1)^* \) represents \(R_1^* = \varepsilon \bigcup_{i \geq 1} (R_1)^i \)

Nothing else is a r.e.

4. \(a^+ \) is \(\bigcup_{i \geq 1} U(R)^i \)
Examples: \(01 + 100\) \(\leq \{0,1\}\)

1. \(0\) n.r.e. \(1\) r.e.
2. \(0.1\) n.r.e.
3. \(100\) in r.e.
4. The \(01 + 100\) n r.e.

2. \((10 + (101) \cdot 10)^*\) in a r.e.

3. \((011)^* = 011(011)^* + 10\) \(\times\)

1. Regular languages represent some subset of strings.
2. Reg Expr also represent same subset of strings.

1 and 2 are identical
- If L can be recognized by a FA
 then there is a reg exp r
 s.t. r represents L

- If r uniquely corresponds to L
 then we can design a FA M
 s.t. $L(M) = L$

FA: DFA / NFA

NFA that uses ε transitions

For every NFA with ε transitions,
there is an NFA w/o ε transitions
Observation: Using ε transitions we can build NFA (will ε-transitions) having exactly one Final state.

First Question

$3 + 3 + 4$