What does the following DFA accept

\[M \]

Difficult to characterize a language by looking at the DFA, but once we have a conjecture, we must prove it rigorously.

For the above machine

\[L(M) = \{ \emptyset, 11, 00, 011, 110 \ldots \} \]

Clearly \(L(M) \) is infinite.

Do we have a nice succinct description?
Claim: \[L(M) = \{ w | \text{\text{bin}}(w) \text{ is divisible by } 3 \} \]

\text{bin}(w) \text{ is the value of a string } w \text{ interpreted as a binary number}

How do we prove it?

Induction on the length of the string

\(\forall n \geq 1, \> w \in \Sigma^n \text{ is accepted by } M \text{ iff } \text{bin}(w) \mod 3 = 0 \)

Is the above easy to prove?

Base cases: 0, 1; strings of length one.

(i) 0 is accepted since \(0 \) is a final state
(ii) 1 is not accepted as \(0 \) is not a final state

I.H. Suppose the above is true for all strings of length \(n \), then we must prove it for all strings of length \(n+1 \)
Let \(|w'| = \eta + 1 \) where
\[
\begin{align*}
w' & \rightarrow w_0 \quad [w_1 = \eta] \\
\end{align*}
\]
So \(w \) satisfies I. H.

Case A: \(\omega \in L(M) \) i.e. \(\text{bin}(w) \mod 3 = 0 \)

So \(\text{bin}(w') = 2 \times \text{bin}(w) + 0 \)

\(\delta^*(q_0, w_0) = \delta(\delta^*(q_0, w), 0) = \delta(q_0, \eta) = q_0 \)

i.e. \(\omega_0 \) in accepted and \(\text{bin}(w_0) \mod 3 = 0 \)

So it is fine

\(\delta^*(q_0, w_1) = \delta(\delta^*(q_0, w), 1) = \delta(q_0, \eta) = q_0 \)

\(\text{bin}(w_1) = [\text{bin}(w) \times 2 + 1] \mod 3 = 1 \)

Since \(q_0 \) is not accepting it is fine

Case B: \(\omega \notin L(M) \), i.e. \(\text{bin}(w) \mod 3 \neq 0 \)

What can we say about \(\omega_0 \) or \(\omega_1 \)?

From DFA, if \(\text{bin}(w) \mod 3 = 1 \), then \(\omega_1 \) is accepted but if \(\text{bin}(w) \mod 3 = 2 \), then \(\omega_1 \) is not accepted.
So to complete the inductive proof we need more information about \(w \), i.e. \(\text{bin}(w) \mod 3 = 1 \) or \(2 \)?

So the inductive assertion must have more than just the property \(f \) states, (which is the accepting state)

\[\text{Attempt 2} \quad \forall n > 0, |w| = n \]

Claim

(i) \(\delta^*(q_0, w) = q_0 \) \(\iff \text{bin}(w) \mod 3 = 0 \)

(ii) \(\delta^*(q_0, w) = q_1 \) \(\iff \text{bin}(w) \mod 3 = 1 \)

(iii) \(\delta^*(q_0, w) = q_2 \) \(\iff \text{bin}(w) \mod 3 = 2 \)

[Or more compactly \(\delta^*(q_0, w) = q_i \) \(\iff \text{bin}(w) \mod 3 = i \) \(i = 0, 1, 2 \)]
Proof. Case \(\omega_1 = 1 \) \(\omega_0 = 0 \).

Check that \(\delta(9_0,0) = 9_0 \), \(\delta(9_0,1) = 9_1 \).

Since no string of length 1 reaches \(9_2 \), it is vacuously true.

I.H. Suppose the assertion is true for all strings \(w, |w| = n \).

\[w' = w \cdot 0 \text{ or } w \cdot 1 \]

Case A

Case B

\[\text{Check: } \bin(w') = \bin(w) \times 2 \]

<table>
<thead>
<tr>
<th>(\bin(w) \mod 3 = 0)</th>
<th>(\bin(w) \mod 3 = 1)</th>
<th>(\bin(w) \mod 3 = 2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta^*(9_0, w) = 9_0)</td>
<td>(\delta^*(9_0, w) = 9_1)</td>
<td>(\delta^*(9_0, w) = 9_2)</td>
</tr>
<tr>
<td>\text{from I.H.}</td>
<td>\text{from I.H.}</td>
<td>\text{from I.H.}</td>
</tr>
</tbody>
</table>

\(\delta(9_0,0) = 9_0 \) \(\bin(w) \mod 3 = 0 \)

and \(\bin(w) \mod 3 = 2 \)

\(\bin(w) \mod 3 = 2 \)

\(\delta(9_1,0) = 9_2 \) \(\bin(w) \mod 3 = 3 \)

and \(\bin(w) \mod 3 = 2 \mod 3 \)

\(\bin(w) \mod 3 = 2 \times 2 \mod 3 = 1 \)
Case B

Similarly you complete Case B

\[w' = w_1 \]

From these 2, we can conclude that

\[8^*(q_0, w) = q_i \text{ iff } \text{bin}(w) \mod 3 = i \]

(Otherwise it would have shown up in one of the above cases)

The claim implies that

\[L(M) = \{ w | \text{bin}(w) \mod 3 = 0 \} \]

since

\[q_0 \text{ is the only accepting state} \]