Finite alphabet (set of symbols) \(\Sigma \)

Strings: a sequence of symbols from \(\Sigma \) of finite length

\(S \in \Sigma^* \quad \epsilon : \) string of length 0

Language \(L \subseteq \Sigma^* \)

\(\chi_L (w) = \begin{cases} 1 & \text{if } w \in L \\ 0 & \text{otherwise} \end{cases} \)

Characteristic function for membership problem

\(\# \text{ languages} \rightarrow \Sigma^* \)

\(\# \text{ programs} \sim \Sigma^* \)

Classes of languages

Diagram: Overlapping sets
Hierarchy of languages using increasing resources for its recognition

"Chomsky" hierarchy

\[A \xrightarrow{f} B \]

\[\text{domain} \]
\[\text{co domain} \]

\[f \text{ is } 1:1 \quad \text{(one-to-one)} \]
\[f \text{ is } 1:1 \text{ and onto: bijection} \]

When sets are finite, we can compare their cardinalities by the number of elements in sets.

How do we compare cardinalities of infinite sets?

When we can define a bijection between two infinite sets, then we conclude that they have the same cardinality.
\[f_E(i) \mapsto 2i \]

\[\Sigma^* \rightarrow \mathbb{Z} \]

strings of length 1, 2, 3, \ldots

- ordering

\[0 \quad 0 . \]

1.

\[\mathbb{Z} \times \mathbb{Z} = \{ (a, b) \mid a, b \in \mathbb{Z} \} \]

\[(1, 3), (5, 20) \in \mathbb{Z} \times \mathbb{Z} \]

\[\mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z} \]
$\mathbb{Z}^+ \cup \mathbb{Z} \cup \mathbb{Z}^+$

- Countable: all these infinite sets that have a bijection with \mathbb{Z}
 - Countable union of countable sets is countable
 - Reals are not equinumerous with Integers • Cantor's diagonalization
There cannot be a bijection between a set S and its power set 2^S.

Case 1: S is finite. Trivial

$$i < 2^i \quad \forall \, i > 1$$

Proof by contradiction for infinite sets

Assume a bijection exists.

\[S_1 \leq S \]

\[S_2 \]

\[S_3 \]

\[S_d \]

\[g(i) \text{ in the bijection} \]

$$S_d = \{ x \mid x \notin g^{-1}(x) \}$$

Question: $d \in S_d$
\[d \in S_d \quad \Rightarrow \quad \text{accordy f} \]
\[\text{defn } d \notin S_d \quad \Rightarrow \quad \text{accordy f} \]

Diagonalization Proof

\[
\begin{array}{c|c}
\text{Math Induction} & \text{Complete Induction} \\
\forall i \ P(i) \text{ is true} & \\
P(0) \land \forall i \ (P(i) \Rightarrow P(i+1)) & P(0) \land \\
& \forall i \left[(\land_{j \leq i} P(j)) \Rightarrow P(i+1) \right]
\end{array}
\]