Multiplying two integers using a function COPY

$$0^m 10^n \rightarrow B^{m+n} 0^m$$

Idea: Use $\text{COPY} \cdot \text{COPY}$

$$0^n \text{ } m \text{ } \text{times}$$

$$0^m 10^n \rightarrow 010^1 0^m \text{ } \overbrace{\text{COPY}} \rightarrow B^0 10^n 10^n$$

$$B 0^{m-1} \rightarrow 0^n 10^n \text{ } \overbrace{\text{COPY}} \rightarrow BB 0^{m-2} 10^n 10^{2n}$$
\[q_0 0^n 10^i \rightarrow 30^{m-1} i 9, 0^n 10^i \]

\(q_1 \) to make an additional sequence \(0^n \)

\[O^d 19, 0^n 10^i \rightarrow O^d 19, 0^n 10^{i+n} \]

\(q_2 \) : Change a 0 \(\rightarrow \) 0 \(\text{for countdown} \) and enter state \(q_2 \)

\(q_3 \) : Change a 0 in \(0^n \) to 2 and copy 0 to right

\(q_4 \) : Move left until 2; change to \(q_2 \) and repeat

until \(O^d 12^n 10^{i+n} \)

\(q_5 \) : \(O^d 12^n 10^{i+n} \rightarrow O^d 10^n 10^n \)
<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>9₁</td>
<td>9₂,2,R</td>
<td>9₃,1,L</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9₂</td>
<td>9₂,0,R</td>
<td>9₂,1,R</td>
<td>9₃,0,L</td>
<td></td>
</tr>
<tr>
<td>9₃</td>
<td>9₃,0,L</td>
<td>9₃,1,L</td>
<td>9₁,2,R</td>
<td></td>
</tr>
<tr>
<td>9₄</td>
<td></td>
<td>9₅,1,R</td>
<td>9₄,0,L</td>
<td></td>
</tr>
</tbody>
</table>

\[\delta(9₀,0) = (9₁,8,R)\]
\[\delta(9₆,0) = (9₆,0,R)\]
\[\delta(9₆,1) = (9₁,1,R)\]
How about non-deterministic TM?
Are there more powerful
\[\delta(q_i, a) \text{ contains } \begin{cases} (q_i', b, R) \\ (q_{i_2}, c, L) \end{cases} \]

How do we simulate using multi-tape det. TM?

\[\beta_1, \beta_2, \beta_3, \ldots, \beta_m \quad \beta_i \in \{1, \ldots, 103\} \]
Given a TM M,
$L(M) = \{ w \mid M \text{ accepts } w \}$

What happens if M doesn't accept w?

- It may reach an undefined state
- It goes on forever
 - ID repeating
 - Head keeps moving right
- The class of languages accepted by a TM is called recursively enumerable (r.e.)

- The class of languages to which we can design a TM that always stops is recursive languages.
An alternate model of TM

Special tape: output tape

```
( ) → write a symbol and move right
output tape
```

```
read only tape input
```
A generator TM writer out all the strings of a given language on the output tape.

A generator for a language L is guaranteed to write out $w \in L$ on the output tape "eventually." A string $w \notin L$ will never be written.

Claim: There is a generator $G(L)$ for every r.e. language L.

Canonical ordering: order according to lengths of strings S_1, S_2, S_3, \ldots.

Given a TM M for L.

Modification: Run M for j steps on S_i. If it accepts, write out S_i on output tape.
Generate all pairs \((i, j)\)

Run \(M\) for \(j\) steps on string \(s_i\)

if accepted write it out on output tape

Note that any string \(w \in L\) will correspond to some \((i, j)\)
Claim: Given a generator $G(L)$ for a language L, then L is r.e. (i.e. accepted by some TM M)

Proof. Run the generator and accept w if w is written on the output tape.

Generator for recursive languages.

The strings of a recursive language L can be enumerated in the canonical ordering.

$L = \{\text{Canonical order } w_1, w_2, w_3, \ldots w_k\}$

$i_1 < i_2 < i_3 < \ldots$}

Show equivalence between TM that always stops (recursive) and generator that print strings in canonical order.