A stack based machine (Push-Down Automaton)

In addition to a finite state transition system, we have an (infinite capacity) stack.

\[(Q, \Sigma, \delta, \emptyset, \Phi, q_0, \Gamma, Z_0)\]

Two separate terminating conditions:
1. The stack is empty when input string is exhausted.
2. We are in a final state when input is exhausted.
\[L = \{ w \in \{0,1\}^* \mid w \in \text{GR} \} \]

\[M = (\{q_1, q_2\}, \{0,1,c\}, \{R,B,G\}, \delta, q_1, R, \text{\phi}) \]

1. \(\delta(q_1,0,R) = \{(q_1, BR), _\} \) \(\delta(q_1,1,R) = (q_1, GR) \)
2. \(\delta(q_1,0,B) = (q_1, BB) \) \(\delta(q_1,1,B) = (q_1, GB) \)
3. \(\delta(q_1,0,G) = (q_1, BG) \) \(\delta(q_1,1,G) = (q_1, GG) \)
4. \(\delta(q_2,0,B) = (q_2, \epsilon) \) \(\delta(q_2,1,G) = (q_2, \epsilon) \)
5. \(\delta(q_2, \epsilon, R) = (q_2, \epsilon) \)
6. \(\delta(q_1, c, R) = (q_2, R) \) \(\delta(q_1, c, G) = (q_2, G) \)
7. \(\delta(q_1, c, B) = (q_2, B) \)
Instantaneous Description (1D) of a PDA

The complete information about a PDA can be obtained from:
1. Current state
2. The current symbol it is scanning
3. The stack contents

1D: \((q, a \cdot w, \alpha) \) \(q \in Q \)
\(a \in \Sigma, w \in \Sigma^* \)
\(\alpha \in \Gamma^* \)

\(I_0 : (q_0, \varepsilon, z_0) \)

\(I_0 \rightarrow I_1 \rightarrow I_2 \rightarrow \ldots \rightarrow I_f \)

\(I_0 \xrightarrow{\gamma} I_f \)

\(I_j \xrightarrow{\delta} I_{j+1} \)

\((p, a \cdot w, \alpha\varepsilon) \rightarrow (q, w, \beta\varepsilon) \)
\(\delta (p, a, \lambda) \) must contain \((q, \beta)\)
PDA's that accept by empty stack
w is accepted by the PDA iff
$(q_0, w, Z_0) \vdash^* (q, \varepsilon, \varepsilon) \quad q \in Q$

PDA's that accept by final state
$(q_0, w, Z_0) \vdash^* (q_f, \varepsilon, \alpha) \quad q_f \in F \quad \alpha \in \Gamma^*$

Thus let L be a language accepted by a PDA using empty stack. Then L is also accepted by some PDA that accepts using final state.

and vice versa
Theorem

Suppose \(L \) is a CFL generated by a CFG \(G = (V, T, S, P) \). Then we can design a PDA \(M \) (accepting using empty stack) such that \(L(M) = L \).

The proof uses Greibach Normal Form.

Theorem

Given a PDA \(M \) that accepts a language \(L \), then we can design a CFG \(G \) such that \(L(G) = L \).

We will provide a construction of a PDA \(M \) given CFG \(G = (S, V, T, P) \) given in Greibach Normal Form:

- \(Q = \{ q \} \) (only one state)
- \(q_0 = q \)
- \(\Gamma = V \)
- \(Z_0 = S \) (bottom stack)
- \(\delta(q, a, A) \) contains \((q, a) \) if \(A \rightarrow \alpha \epsilon \) and \(\alpha \in V^* \) (including \(\epsilon \))
The idea is to simulate a leftmost derivation of the grammar given in GNF

\[S \rightarrow x \lambda \text{ iff } (q, x, S) \xrightarrow{*} (q, \lambda, \lambda) \]
when \(x \in T^+ \) and \(\lambda \in V^* \)

The formal proof will be using induction on \(\xrightarrow{*} \)

Let us consider a running example

\[L = \{ w = w^R \mid w \in (a+b)^* \}, \text{ i.e. palindromes over } \{a,b\} \]

CFG

\[
\begin{align*}
S & \rightarrow aSSa \mid bSSb \mid aS \mid bS \mid \lambda \\
S_a & \rightarrow a \\
S_b & \rightarrow b
\end{align*}
\]

in GNF

(It may be easier to compare with a more intuitive non GNF grammar

\[
S \rightarrow aSa \mid bSb \mid aa \mid bb \mid a \mid b
\]
So the PDA would have transition function as follows

1. \(\delta(q, a, s) \) contains \(\{(q, s, s_a), (q, s_a, (q, s_b), (q, s_b, (q, \varepsilon)\}

2. \(\delta(q, b, s) \) contains \(\{(q, s, s_b), (q, s_b, (q, \varepsilon)\}

3. \(\delta(q, a, s_a) \) contains \((q, \varepsilon) \)

4. \(\delta(q, b, s_b) \) contains \((q, \varepsilon) \)

Consider the derivation of \(bbaaabbb \) which is a palindrome

\[
S \rightarrow b SS_b \rightarrow b b SS_b S_b \rightarrow b b a S_a S_b S_b
\]

\[
\rightarrow b b a a S_1 S_2 S_2 \rightarrow b b a a b b \rightarrow b b a a b b
\]

Here is how the machine accepts by mimicking the left most derivation

\[S \quad \rightarrow \quad b \quad \rightarrow \quad b b S_1 \quad \rightarrow \quad b b a S_a \quad \rightarrow \quad b b a a b b \]
Verify if the string can be accepted using any alternate moves of the machine. The machine crashes (doesn’t accept) if there is no well-defined next move.