Commonly used CFL

Arithmetic expressions

\[S \rightarrow S + S \mid S - S \mid S \times S \mid S \div S \mid (S) \mid V \mid N \]

\[V \rightarrow \{a, b, c, \ldots, z\} \cup V \mid \{a, b, c, \ldots, z\} \]

\[N \rightarrow \{0, 1, 2, \ldots, 9\} \cup N \mid \{0, 1, 2, \ldots, 9\} \]

That produces expressions like

\[(x + 9)4y + 10\quad \text{etc.}\]

Balanced parentheses

\[S \rightarrow (S) \mid S \cdot S \mid () \]

That produces

\[(())(())(()())()\quad \text{etc.}\]
Conversion of Arbitrary CFG to normal forms

<table>
<thead>
<tr>
<th>Chomsky Normal Form</th>
<th>Greibach Normal Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prod. of the form A → BC</td>
<td>A → a α</td>
</tr>
<tr>
<td>exactly 2 variables w one terminal on the Right hand side</td>
<td>α ∈ {ΣTUV}</td>
</tr>
<tr>
<td></td>
<td>i.e. it must start with a terminal</td>
</tr>
</tbody>
</table>

Steps of transformation

1. Eliminate useless symbols:
 - If a variable \(X \) doesn't appear in any derivation, i.e. \(S \xrightarrow{*} \alpha \beta X \alpha' \) or \(\beta X \xrightarrow{*} T \beta' \) \(X \) doesn't lead to any string over terminals, such variables (and all rules containing them) can be discarded without changing the language.

2. Eliminate \(\epsilon \) productions.
 - Suppose \(S \rightarrow A \beta \epsilon \) and \(A \rightarrow \epsilon \) \(B \rightarrow \epsilon \)
then we can eliminate $A \rightarrow E, B \rightarrow E$
and add the following rules in lieu

$S \rightarrow Ad \mid S \rightarrow Bd \mid S \rightarrow ABDd \mid S \rightarrow \alpha$

e.g., and all derivations of the original grammar can be preserved

(iii) Unit produc $A \rightarrow B, B \rightarrow \alpha \ldots$
can also be eliminated like

$A \rightarrow \times B, B \rightarrow \alpha$ then $A \rightarrow \alpha$

\[\text{Thm}: \text{Given any arbitrary CFG } G\]

it can be transformed to G_1, G_2
where G_1 is in CNF and G_2 in GNF.

$s.t. \quad L(G) = L(G_1) = L(G_2)$

We will show several applications of
the normal forms as they are
much easier to work with and have
nice properties.
\[S \to aB \mid bA \]
\[A \to a \mid aS \mid bAA \]
\[B \to b \mid bS \mid aBB \]

\[S \to CaB \mid C_bA \]
\[A \to a \mid CaS \mid C_bD \]
\[B \to b \mid C_bS \mid CaE \]
\[C_a \to a \quad C_b \to b \]
\[D \to AA \]
\[E \to BB \]

Membership problem Given \(G = (V, \Sigma, \delta, \psi) \) in CNF and a string \(w \in \Sigma^* \) does \(S \xrightarrow{*} w \)?

\[|w| = n \quad \omega_1, \omega_2, \omega_3 \ldots \omega_n \]
\[S \xrightarrow{*} w \]

\[S \xrightarrow{*} w \text{ iff there is a } j \text{ st. } \]
\[S \to A \ B \text{ and } A \xrightarrow{*} \omega_1, \omega_2, \ldots, \omega_j \]
\[\text{ and } B \xrightarrow{*} \omega_j, \omega_{j+1}, \ldots, \omega_n \]

\[\omega_{ij} = \omega_i \omega_{i+1} \ldots \omega_j \]
1. **Start and Length Diagram**:
 - Variables: S, A, B, C_a, C_b
 - Production Rules:
 - S → C_a B | C_b A
 - A → a | C_a S | C_b D
 - B → b | C_b S | C_a E
 - D → AA
 - E → BB
 - C_a → a
 - C_b → b
 - Example: baab

2. **Grammar Table**:
 - | length 1 | 2 | 3 | 4 |
 - | S | B, C_b | A, C_a | A, C_a | B, C_b |
 - | S | D | S |
 - | 3 | A | A |
 - | 4 | S |

3. **Regular Expression**:
 - S → C_b A
 - C_b → b
 - A → aab
The D.P. takes $O(n^3)$ steps (considering the size of grammar to be constant and ignoring data structure cost)

CYK algorithm