<table>
<thead>
<tr>
<th>Language Class</th>
<th>Generation</th>
<th>Recognition</th>
<th>Properties</th>
<th>Limitations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Regular</td>
<td>reg. expr.</td>
<td>DFA/NFA</td>
<td>p.l. closure properties decision algo</td>
<td>can't handle a*b/c^k</td>
</tr>
<tr>
<td>Context Free</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Set of rules

1. \(S \rightarrow a \ b \)
2. \(S \rightarrow a S b \)
3. \(S \rightarrow \epsilon \)
 \(S \rightarrow a S b \rightarrow a a S b b \rightarrow a a a S b b b \rightarrow a a a a b b b b \)

apply repeatedly one of the rules

Any sequence of substitution must begin with the special variable \(S \)

\(G : \{ V = S, S = S \} \)
\(T = \{ a, b, \epsilon \} \)
\(P = 1, 2, 3 \)

Convention: Capital letters for variables, small case for terminals

\(AB \rightarrow ABB \)

Context Free Grammar (CFG), the production rules have exactly one symbol on the LHS
Grammar \(G = (V, T, P, S) \)
- Set of variables that appear in RHS
- Set of variables
- Set of rules / productions
- Set of alphabet / terminals

Let: Equal number of a's and b's
\(a^i b^i \), \(aabab, aababa \)

Is \(L_eq \) regular?

Context Free Language (CFL): all languages that can be generated using CFG

Is \(L_eq \) CFL?

\(S, \{a, b, \epsilon\}, S, S \rightarrow \epsilon | ba | ab | la | bl | ba S | ab S \)
The given text contains a grammar for a formal language, along with a claim and its proof by induction.

Grammar:

\[V = \{ \epsilon, A, B \} \quad T = \{ a, b \} \]

- \(S \rightarrow aB \mid bA \mid \epsilon \)
- \(A \rightarrow a \mid bAA \mid aS \)
- \(B \rightarrow b \mid aBB \mid bS \)

Claim 1:

\(S \rightarrow \omega \) iff \(\omega \) has equal number of a's and b's for \(|\omega| \geq 1 \).

Claim 2:

- \(A \rightarrow \omega \) iff \(\omega \) has one more a than b.
- \(B \rightarrow \omega \) iff \(\omega \) has one more b than a.

Proof by Induction on \(|\omega| \):

- **Base Case:** \(|\omega| = 1 \)
 - \(S \): no strings of length 1, so true.
 - \(A \): \(A \rightarrow a \) only string of length 1.
 - \(B \): \(B \rightarrow b \)

- **Induction Hypothesis:** For all \(|\omega| \leq k-1 \)

Consider any string \(|\omega| = k \)

- \(S \rightarrow a \omega \rightarrow b \omega \), If \(\omega \) has equal number of a's and b's then \(S \rightarrow \omega \)

- \(S \rightarrow aB \rightarrow a \omega \) if the B generates all strings \(\leq \) length \(k-1 \) with one extra b.
So $B \xRightarrow{} w_i$

Conversely if $S \xRightarrow{} w$ then $w = a w_i \overset{\text{extra } b}{\underset{\text{extra } a}{\Rightarrow}}$

Let $S \rightarrow aB$ So $B \xRightarrow{} w_i$

from I.H. w_i has an extra b

Prove it for all three assert A, B, S and their converse

$$A \rightarrow a \mid b A A \mid a S$$

If $A \xRightarrow{} w$ $|w| = k$ then w has one more a than b

Let $w = b w_i$, $A \rightarrow b A A \xRightarrow{} b w_i', A \overset{a}{\Rightarrow} w_i'$

Sub $A \rightarrow w_i', A \rightarrow w_i''$ $|w_i'| \leq k-1, |w_i''|$

From I.H. w_i', w_i'' will have $|w_i''|$

So overall one more a than b

If w has one more a than b then $A \xRightarrow{} w$

$|w| = k$, $w = a w_i$, $w_i \notin \Sigma^{*} a\Sigma^{*} b$ and b’s

$A \rightarrow a S \xRightarrow{} a w_i$, where $S \xRightarrow{} w_i$
\[W = b W_1 \quad w_1 \text{ has } 2 \text{ extra } a's \text{ than } b's \]

\[W_1 = \underbrace{x_1 x_2} \overbrace{x_3 \ldots x_{k-1}}^A A \]

Difference between \#a's and \#b's for each position of the string \(w \),

\[0 \ 1 \ 0 \ 1 \ 0 \ 1 \ 2 \]

\[baababa \]

H.W. Problem. Design a CFG for strings over \(a, b \) s.t.

\[\#a's = 2 \times \#b's \]

Different ways of writing CFG

Membership problem

Given a CFG \(G = (V, T, S, P) \) and a string \(w \in T^* \), does \(S \rightarrow w \) Derivation True

```
S
 b
 \_ \_ \_
A \_ A
\_ \_ \_
```

\(\text{0 0 0 0 0 0} \) Terminals
Canonical form of CFG

Chomsky Normal Form

A → BC
A → a

Greibach Normal Form

A → a BCD
A → a

Claim: Any given CFG can be transformed into an equivalent CNF or GNF