Minimal State DFA

Theorem: The minimum state DFA for a regular language L is unique up to isomorphism (renaming of states).

This is a corollary of the Myhill Nerode theorem and corresponds to the equivalence classes of RL.

Given any DFA M for L, let M' be a completely contained with some equivalence class of RL (the machine for RL).

For any machine M, the number of states of M' is less than or equal to the number of states of M.

Consider a machine M which has the same number of states as M'.
We want to map the states of \(M \) to \(M' \).

Let \(q \) be a state of \(M \) then clearly for some \(x \in \Sigma^* \)
\[
\delta(q_0, x) = q \quad (\text{otherwise } M \text{ is not min state})
\]

\(q \to [x] \quad (\text{corresponding to } R_i) \)

for consistency verify that for any other \(y \)
\[
\delta(q_0, y) = q \quad [y] = [x]
\]

Since \(x \) and \(y \) belong to the same state they are in the same equiv claw \(\alpha \) \(\delta(q_0, y) = q \quad [y] = [x] \)

To complete the proof show that
\[
\delta(q, a) = \delta([x], a) = [xa]
\]

(this is how \(M' \) was constructed)
Constructing min state DFA

Since this is related to \(R_L \) which is above string \(x, y \) behaving identically with respect to accepting/non-accepting for any concatenate string \(z \), no accepting state can be equivalent to non-accepting state because it must satisfy \(R_L \) for \(z = \varepsilon \).

\[
\begin{array}{c|ccc}
& 0 & 1 & \varepsilon \\
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
\end{array}
\]

Consider a pair of states \(p, q \)
We cannot club \(p \) and \(q \) if for some string \(z \in \Sigma^* \) \(\delta(p, z) \in Q - F \) and \(\delta(q, z) \in F \) or vice versa

\(\Rightarrow \) If \((p', q')\) are not eqv then \(p, q \) are not eqv if \(\delta(p, a) = p' \) \(\delta(q, a) = q' \)
Define a graph whose vertices correspond to \(Q \times Q \)
and edges correspond to:

Initially, "mark" all pairs known to be not equivalent, viz \(F \times (Q - F) \)

A special case of "coarsest partitioning problem"
Try it out this:

Only \((A, B)\) can be clubbed

\[
\begin{align*}
(A, B) & \xrightarrow{0} (B, B) \\
(A, B) & \xrightarrow{1} (C, C)
\end{align*}
\]

Since the states are same in both cases, they cannot be distinguished by any thing.

Therefore \(A, B\) can be clubbed & the final new state automaton will be

The transitions of the new machine can be thought of as graph-contraction, i.e., once vertices are merged, the edges are between merged vertices.

Argue why we cannot have a situation after merging vertices, i.e., no non-deterministic transitions.
Example

\[\rightarrow A \rightarrow B \rightarrow C \rightarrow D \]

Paris

\[\begin{align*}
\{A, B\} & \quad \{A, C\} \\
\{B, C\} & \quad \{B, D\}
\end{align*} \]

\[\begin{align*}
\{A \ Relative \ AD\} \\
\{C\} & \quad \{D\}
\end{align*} \]

Since one is accepting and the other is not

\[\{A, C\} \quad \{B, D\} \]

can be merged according to this graph leading to the automaton

\[\rightarrow \{A, C\} \rightarrow \{B, D\} \]

i.e. the minimum state DFA for \((00)^*\)