(i) Is there a minimum state machine for L?

(ii) How are all minimum state machines for L related?

What happens if we club states - say $[A,C]$ and $[B,D]$?

What if we club $[A,B]$ and $[C,D]$?
When and how can we club states together and obtain a legitimate DFA for language L?

Two strings $x, y \in \Sigma^*$ will behave similarly in future if $\delta(q_0, x) = \delta(q_0, y)$ since $\delta(q_0, xz) = \delta(q_0, yz)$ for all $z \in \Sigma^*$.

So states club together strings whose future behavior w.r.t. concatenation is same — in particular either both are accepted or both are rejected.

This reln is an equivalence reln since it satisfies $xR_my \Rightarrow xR_mx$ and $yR_mz \Rightarrow xR_my$.
A special class of equivalence relation for strings in Σ^*

$x \sim y$, $x, y \in \Sigma^*$ are "equivalent" under a right invariant property if $\forall z \in \Sigma^*$, $x \sim y \Rightarrow x \cdot z \sim y \cdot z$

Intuition: Given a DFA, M, all string $w \in \Sigma^*$ such that

$\hat{\delta}(q_0, w) = q'$

$x \sim_M y$ if $\hat{\delta}(q_0, x) = \hat{\delta}(q_0, y)$

This equivalence reln \sim_M is right invariant since $\hat{\delta}(q_0, x \cdot z) = \hat{\delta}(q_0, y \cdot z) \forall z$

Why is \sim_M transitive?

If $x \sim_M y \sim_M z \Rightarrow x \sim_M z$
Any equivalence relation on a set partitions the elements into (disjoint) equivalence classes.

Can we achieve a reduction in the number of states (equivalence classes) for a given regular language?

1. What is the min no. of equivalence classes – related to minimum state DFA for a language L?

2. Is this machine “unique”?

We want to tighten our definition of the equivalence relation in the following way:

$x \sim_L y \iff \forall z \in \Sigma^* [x.z \sim_L y.z]$
The relation that we had defined on the basis of the machine does not force $x \sim y$ even if $xz \sim yz$, $z \in \Sigma^*$

R_L : relation for a language L

$R_L(y, y)$ if $xz \in L^*$ either x, z and y, z are both in L or both are not in L.

Claim: R_L is a right invariant equivalence relation

$R_I :$ if $x R_L y, \forall z \in \Sigma^*$ $x z \sim y z$

R_M : for a specific DFA δ_L
We know that for all $z' \in \Sigma^*$, $x \cdot z'$ and $y \cdot z'$ are both in L or not in L for R, xR_y.

We want to show that $\forall u \in \Sigma^*$ $x \cdot u \cdot R_y \cdot u \cdot y$ or in other words $\forall z \in \Sigma^*$ $x \cdot u \cdot z$ and $y \cdot u \cdot z$ are both in L or not in L.

Choose $z' = u \cdot z$

The equivalence classes I the rela R_L for a regular language correspond to the states of min state DFA

Myhill-Nerode Theorem
A language L is regular iff the no. of equivalence classes I R_L is finite.
For proof we will go through an
indirect construction using R_M. The following statements are equivalent:

1. L is a regular language
2. L is the union of some
 number of equivalence classes of
 a right invariant equivalence reln.
 of finite index (equivalence classes)
3. R_L has finite index

$\forall x R_M y \Rightarrow x R_L y$
\[\# \text{equiv classes of } R_L \leq \# \text{equiv classes of } R_M \]

So either both $x \notin L$ or not in L

$\Rightarrow x R_L y$
\[\Theta \Rightarrow \Xi \]

Given \(R \) with finite index, we will construct a DFA for \(L \).

Let \([x]\) denote the equivalence class of any string \(x \in \Sigma^* \).

\[M = (Q, \Sigma, \delta, q_0, F) \]

\(\equiv \) \(\text{class of } R \)

\(\exists \]

\[\delta([x], a) = [xa] \]

Is it consistent? \(\forall a \in \Sigma \), if \(y \in [x] \) is \([ya] = [xa] \) (by \(R \)).

\(F \): A state is accepting state of \(x \in L \) if \(\hat{\delta}([\Xi], x) \in F \) iff \(x \in L \)

\([x] \) by our previous definition \(\hat{\delta} \)

So \([x] \in F \) iff \(x \in L \) \(q.e.d. \)