Announcements

Assignment problems from Text Sheet 1
- 1c, 1d, 2b, 3a due Feb 1, Monday
 (Attempt all problems that are covered in lecture)
- Short quiz on Wed (Jan 27)

Relation between r.e. and Finite Auto

NFA with ɛ-moves

\[
\begin{align*}
&\text{NFA with ɛ-trans. can be simulated by NFA} \\
&\text{w}_1: 0^1 1^2 0^1 1^0 \\
&\text{w}_2: 0^0 0^0 1^1
\end{align*}
\]
To show equivalence between two machine models M_1 and M_2, we must show that:

(i) M_1 can simulate M_2

(ii) M_2 can simulate M_1

"simulate": we can design a machine to accept the same language as the other machine

ε-closure (q_0): All the states reachable from q_0 with only ε-transitions.

If ε-closure (q_{go}) \cap F $\neq \emptyset$ then q_{go} is a final state in the NFA without ε-transition.
Finite Automata vs r.e.

(i) Build a FA for a given r.e.

(ii) For a given FA, we must design an equivalent r.e.

\[\Sigma: \{0, 1\} \]

Bar case 0, 1, 0, 1, \epsilon, \emptyset

\[\rightarrow 0 \rightarrow 0 \]

Using NFA with \epsilon-transitions we can convert any NFA to an equivalent NFA with exactly one final and one initial state.
Continued with

\[L = \emptyset \]

\[L = \emptyset \]

\[\phi \]

\[L_1 + L_2 \quad L_1 \cdot L_2 \]

Proof (Construction) on the regular expression

Inductively we can construct NFA for \(n_1 \), \(n_2 \) and \(n_1 + n_2 \)

\[|n_1|, |n_2| \] are strictly smaller than \(|n_1 + n_2| \)

\[(a+b)^* \]

The length of the regular expression

\[(n_1)^* \]
\(\eta_1 \)

\[\varepsilon \quad \text{Of} \quad \varepsilon \]

\(\lambda \quad \eta_1 \quad \eta_2 \quad \eta \)

\[w \in \eta_1 \cdot \eta_2 \iff w, \varepsilon \in \eta_1, \quad w_2 \in \eta_2 \]

\[n^* \quad \varepsilon \]

Does this accept exactly \(n^* \)?