Σ: finite alphabet
Σ^*: all finite length strings over Σ including ε (zero length)

Language $L \subseteq \Sigma^*$
We are interested in membership queries for a given language L.

String $S = x_1, x_2, x_3, \ldots, x_n$

- We can store at most some "constant" n_0 of input symbols
- We can scan the input only once

$\Sigma = \{0, 1\}$

$L_1 = \{ x \in \{0, 1\}^* \mid \# 0's \text{ is divisible by } 3 \}$
Idea: Keep track of the "mod class of # 0's mod 3". 0, 1, 2

Initially we are in mod class [0]

next symbol

\[0 \rightarrow [x] \rightarrow [(x+1) \mod 3] \]

\[1 \rightarrow \text{no change in mod class} \]

1. There are finite 'states' (correspond to mod 3 classes) does not depend on length of string

2. What happen when the input symbol is 0, 1
Finite State Automaton / Machine

\[\Sigma: \text{alphabet} \]
\[Q: \text{set of final states} \ 9_1, 9_2, 9_3 \]
\[q_0: q_0 \in Q \quad \text{initial state} \]
\[F: F \subseteq Q \quad \text{final states} \]
\[\delta: Q \times \Sigma \rightarrow Q \quad \text{transition function} \]

\[\delta \left(q_0, 0 \right) = 9_1, \quad \delta \left(q_0, 1 \right) = 9_3, \quad \delta \left(q_0, 2 \right) = 9_2 \]

\[M = (\Sigma, Q, q_0, F, \delta) \]

M corresponds to some language \(L \)

\[L(M) = \{ x \in \Sigma^* \mid \delta(q_0, x) \in F \} \]

\[\delta^*(q, a) = \delta(q, a) \quad a \in \Sigma \]

\[\delta^*(q, ax) = \delta^*(\delta(q, a), x) \quad x \in \Sigma^* \]

\[\delta^*(q, \epsilon) = q \]
Given some language description L, design a FSA M s.t.

$L(M) = L$ (Nothing more, nothing less)

Given a machine M, show that

$L(M) = \{ \}$
What things does this machine accept?

0 1 0 1 0 1

Claim: For all strings \(w \in \{0, 1\}^* \)

\[w \in L(M) \text{ iff } w \text{ has even } 0's \text{ and even } 1's \]

(i) \(w \in L(M) \Rightarrow w \text{ has even } 0's \)

\[g(9, w) = 9, \Rightarrow w \text{ has even } 1's \]

(ii) If \(w \text{ has even } 0's \) \(w \in L(M) \)

\(w \in L_{0011} \)
We will prove (i) by using Induction on length of string.

For all \(n \geq 0 \), statement (i) is true.

For all \(w \in \{0,1\}^* \), statement (i) is true for \(|w| > 0 \).

Base case:

\(|w| = 0 \) \(\in \) \(\in L(M) \) and in accepted \(\in \in L_{0011} \).

Suppose for all \(w \in \{0,1\}^* \) \(|w| = n \).

Statement (i) is true.

We want to show that (i) is true for \(|w| = n+1 \).

\(w : w'0 \) or \(w'1 \) \(|w'| = n \)

\(\delta(q, wa) = \delta(\delta(q, w), a) \)

\(w'0 \in L_{0011} \) \(w' \notin L(M) \)

\(w'1 \notin L_{0011} \) \(w' \in L(M) \)

(i) \(\delta(q_1, w) = \begin{cases} \delta(q_1, w) & \text{if } w \in L_{0011} \\ q_2 & \text{if } w \in L_{011} \\ q_3 & \text{if } w \in L_{01} \\ q_4 & \text{if } w \in L_{001} \end{cases} \)
By induction on length \(l \) of string \(w \), we want to show that if \(w \in L_{011} \), then \(\hat{S}(q, w) = 9_1 \).

If \(w \in L_{011}, L_{001}, L_01 \), then there is nothing to prove.

Inductive step: \(w = w'0 \cdot w'' \).

For \(w' \), we use induction hypothesis.

Assignment due by 12 noon on Fri.

\[L' = \{ \omega \in \Sigma_0, \Sigma_1 | \text{the third last symbol in } 1 \text{ \text{is } } 0, 1 \} \]