Cook-Levin Theorem: The satisfiability problem of boolean expression is NP-complete.

Part 1: \(L_{\text{SAT}} \in \text{NP} \); easy.

Part 2: For any \(L \in \text{NP} \), \(L \leq_{\text{poly}} L_{\text{SAT}} \).

\[\Rightarrow \text{For a nondet } M \text{ s.t. } L(M) = L \]

Given any \(w \), we have to construct a Turing computable polynomial-time function \(f \) s.t. \(f(w) \in L_{\text{SAT}} \) iff \(w \in L \).

Note: \(f(w) \) is a boolean expression (not too long).
ND TM \(M \) takes at most \(p(n) \) steps for any input of length \(n \) where \(p \) is some polynomial.

Final ID must be one of the final accepting states

\(S_M \) is a transition function that may have multiple successors (non-det)
\(w \in L \) if

1. \(M \) contains \(w \) as an initial input and
2. \(I_{p(n)} \) contains a final state
3. \(\forall j \leq p(n) I_{j+1} \) follows from \(I_{j} \) using a legal transition function of \(M \).

The goal is to represent the above conditions as a boolean formula \(F_{M}(w) \) which is satisfiable if \(w \in L \)

Reduction function \(f \) is computable in poly-time

\[\Rightarrow |F_{M}(w)| \text{ is of polynomial length} \]

\[\{1, 2, \ldots, k\} \]

Idea: To guess each of the \(p(n) \times p(n) \) symbols and verify conditions 1, 2, 3.

To convert from a \(k \)-valued variable to a boolean variable, we can introduce \(k \) variables for each variable.
$x_{i,1}, x_{i,2}, \ldots, x_{i,K}$, $x_{i,j}, x_{i,k}$

X_1, X_2, \ldots, X_K

1, 2, ..., K

$x_{i,j}$ are boolean variables st.

$x_{i,j} = \begin{cases} \text{true} & \text{if } x_i = j \in \{1, \ldots, K\} \\ \text{false} & \text{otherwise} \end{cases}$

Additional condition (beyond 1, 2, 3)

(4) Exactly one $x_{i,j}$ must be true for each $i \leq p(n) \times p(n)$

\[
(\overline{x_{i,1}} \lor x_{i,2} \lor \cdots \lor x_{i,K}) \land \left(\bigwedge_{j \neq j'} (x_{i,j} \Rightarrow \overline{x_{i,j'}}) \right)
\]

\[
(\overline{x_{i,j}} \lor \overline{x_{i,j'}})
\]

Total boolean variables: $p(n) \times p(n) \times K$