\(L\emptyset = \{ \langle M \rangle \in \Sigma^* \mid L(M) = \emptyset \} \)

\(L_{\neq \emptyset} = \{ \langle M \rangle \in \Sigma^* \mid L(M) \neq \emptyset \} \)

Using a pair generator and trying all strings in some canonical order we showed that \(L_{\neq \emptyset} \) is R.E.

How about \(L\emptyset \)?

Note that if \(L\emptyset \) is R.E. \(\Rightarrow L\emptyset \) is recursive, recursive / decidable / same computable
Claim \(L \Phi \) is non-r.e.

Consider some known non-r.e. lang \(L \) and \(L \leq f \Phi \)

\[\{ L_d, L_w \} \]

\(L_w \leq L \Phi \langle M \rangle \)

\(\langle M, w \rangle \)

\(\Xi^* \)

\(\Xi^* \)

If \(M \) doesn't accept \(w \) then \(f(M, w) = \langle M' \rangle \) must satisfy \(\langle M' \rangle \notin L \Phi \)

If \(M \) accepts \(w \) then \(\langle M' \rangle \notin L \Phi \)
Currying function

g(x, y) converted to \(g_x(y) \)

(transform a 2-input to a 1-input function by fixing one parameter)

\(g_x(y) : g_{xy} \) with no input

\[f(M, w) \text{ can be transformed to } f_{xy}(w) \]
and can be further transformed to

\[f_{M, w} \]

Can be done using a program (Turing machine)

Initially \(f \) is similar the function for \(M_n \) and then transformed into \(\overline{M_n^{M, w}} \) : code 1
Next we stitch another code:

code 2: If \(M \) accept \(w \) then read the input and accept it

Code 1

Code 2 : \(\langle M' \rangle \)

\(M' \) : 1. It initially ignores the input
2. Runs \(M \) on \(w \)
3. If \(M \) accepts \(w \), it accepts \(x \)
4. If \(M \) doesn't accept \(w \), then \(x \) is not accepted

\(M \) accepts \(w \) \(\Rightarrow \) \(L(M') = \Sigma^* \)

\(M \) doesn't accept \(w \) \(\Rightarrow \) \(L(M') = \emptyset \)
Property of r.e. languages

\(\langle M \rangle \) empty
\(\langle M \rangle \) non-empty
\(\langle M \rangle \) \(\not\in \mathbb{E}^* \)
\(\langle M \rangle \) non-receivable

Any non-trivial property of r.e. languages is undecidable

Rice's Theorem

Not all machines satisfy the property
Some \(\langle M \rangle \) should satisfy and some \(\langle M \rangle \) shouldn't satisfy