1. $S \rightarrow ab$
2. $S \rightarrow aSb$
3. $S \rightarrow \varepsilon$
 $S \rightarrow aSb \quad \rightarrow \quad aaaSbb \quad \rightarrow \quad aaaaSbbbb$
 $\quad \rightarrow \quad aaaaabbbbb$

4. $S \xrightarrow{*} w$
 $w = a^i b^i$, $i \geq 0$

apply repeatedly one of the rules

Any sequence of substitution must begin with the special variable S

$G: \{ V = S \quad S \rightarrow S \}$
$T = \{ a, b, \varepsilon \}$
$P = \{ 1, 2, 3 \}$

Convention: Capital letters for variables, small case for terminals

$AB \rightarrow ABBB$

Context Free Grammar (CFG), the production rules have exactly one symbol on the LHS
Grammar $G = (V, T, P, S)$

- Set of variables V
- Start symbol S
- Set of terminals
- Set of rules P
- Production $\rightarrow E \in V$

Case: Equal number of a's and b's
$q^i b^i a b a b a b a b a b$, $a a b a b a b b$

Is $L(eq)$ regular?

Context-Free Language (CFL): all languages that can be generated using CFG

Is $L(eq)$ CFL?

$S, \{a, b, \epsilon\}, S, S \rightarrow \epsilon | b a | a b | b a S | a b S$
\[V = \{ S, A, B \} \quad T = \{ a, b \} \]

\[S \to aB \mid bA \mid \varepsilon \]

\[A \to a \mid bAA \mid aS \]

\[B \to b \mid aBB \mid bS \]

Claim 1: \(S \not\Rightarrow w \) iff \(w \) has equal \(a \)'s and \(b \)'s

for \(|w| \geq 1 \)

2. \(A \not\Rightarrow w \) iff \(w \) has one more \(a \) than \(b \)

3. \(B \not\Rightarrow w \) iff \(w \) has one more \(b \) than \(a \)

Proof by induction on \(|w|\):

\(|w| = 1 \):

Base case: \(|w| = 1\):

- \(S \): no strings of length 1, so true
- \(A \): \(A \to a \) only string of length 1
- \(B \): \(B \to b \)

Suppose true for all \(|w| \leq k-1 \)

Consider any string \(|w| = k\)

\[S \]

\[a_{\omega_1} \quad \xrightarrow{w} \quad b_{\omega_1} \quad |\omega_1| = k-1 \]

\[S \to aB \not\Rightarrow a_{\omega_1} \]

Some \(B \) generates all strings \(|w| = k-1 \) with one extra \(b \).
So \(B \to^1 w \).

Conversely if \(S \to^1 w \) then \(w = aw_1b \).
\(aw = bw_2 \).
\(\uparrow \) extra \(a \)

Let \(S \to aB \) \(S \to B \to^1 w \).

From I.H. \(w \) has an extra \(b \).

Prime it for all the three assertions \(A, B, S \) and their converse.